Skip to main content
Log in

Performance analysis of slot waveguide using aluminum nitride in slot region

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The major obstacle to accomplish an efficient photonic slot waveguide is its comparatively high propagation loss. In the current work, the silicon-on-insulator based slot waveguide with ultra-low propagation loss has been presented using aluminum nitride (AlN) in the slot region. The performance analysis of the slot waveguide has been done by varying the slot gaps from 20 to 240 nm and by varying the arm width from 160 to 340 nm. As compared with the recently reported works based on different slot waveguides, relatively smaller propagation loss of ~ 0.7 dB/cm has been predicted using the AlN based slot waveguide having a slot gap of 120 nm and arm width of 240 nm. Simulation results have demonstrated that the presence of AlN in the slot gap/low-index region, sandwiched between two high-index (silicon) regions, causes the discontinuity of the electric field of quasi-TE mode between the high-index regions. This results in high confinement of light with the smaller propagation loss in the slot region. Along with this, it has also been observed that the presented slot waveguide has the appreciably good propagation length, with low dispersion characteristics. Hence, this kind of analysis can be extended to realize the various optical devices/applications, such as for coupling, sensing, switching, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alasaarela, T., Korn, D., Alloatti, L., Saynatjoki, A., et al.: Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition. Opt. Express 19, 11529–11538 (2011)

    ADS  Google Scholar 

  • Almeida, V.R., Xu, Q., Barrios, C.A., Lipson, M.: Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004)

    ADS  Google Scholar 

  • Armaroli, A., Morand, A., Benech, P., Bellanca, G., Trillo, S.: Comparative analysis of a planar slotted microdisk resonator. J. Lightwave Technol. 27, 4009–4016 (2009)

    ADS  Google Scholar 

  • Baehr-Jones, T., Hochberg, M., Wang, G., Lawson, R., Liao, Y., Sullivan, P.A., Dalton, L., Jen, A.K.-Y., Scherer, A.: Optical modulation and detection in slotted silicon waveguides. Opt. Express 13, 5216–5226 (2005)

    ADS  Google Scholar 

  • Baehr-Jones, T., Penkov, B., Huang, J., Sullivan, P., Davies, J., Takayesu, J.: Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V. Appl. Phys. Lett. 92, 163303(1–3) (2008)

    ADS  Google Scholar 

  • Barrios, C.A.: High-performance all-optical silicon microswitch. Electron. Lett. 40(14), 862–863 (2004)

    ADS  Google Scholar 

  • Barrios, C.A., Gylfason, K.B., Sanchez, B., Griol, A., Sohlstrom, H., Holgado, M., Casquel, R.: Slot-waveguide biochemical sensor. Opt. Lett. 32, 3080–3082 (2007)

    ADS  Google Scholar 

  • Carlborg, C.F., Gylfason, K.B., Kazmierczak, A.: Dortu, et al, A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. Lab. Chip 10, 281–290 (2010)

    Google Scholar 

  • Chen, X., Chen, Y.S., Zhao, Y., Jiang, W., Chen, R.T.: Capacitor-embedded 0.54 pJ/bit silicon-slot photonic crystal waveguide modulator. Opt. Lett. 34, 602–604 (2009)

    ADS  Google Scholar 

  • Claes, T., Molera, J.G., Vos, K.D., Schacht, E., Baets, R., Bienstman, P.: Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photonics J. 1(3), 197–204 (2009)

    ADS  Google Scholar 

  • Debnath, K., Khokhar, A.Z., Boden, S.A., Arimoto, H., Oo, S.Z., Chong, H.M.H., Reed, G.T., Saito, S.: Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching. Front. Mater. 3, 1–5 (2016)

    ADS  Google Scholar 

  • Ding, R., Baehr-Jones, T., Kim, W.J., Xiong, X., Bojko, R., Fedeli, J.M.: Low-loss strip-loaded slot waveguides in silicon-on-insulator. Opt. Express 18, 25061–25067 (2010)

    ADS  Google Scholar 

  • Guo, R., Wang, B., Wang, X., Wang, L., Jiang, L., Zhou, Z.: Optical amplification in Er/Yb silicate slot waveguide. Opt. Lett. 37, 1427–1429 (2012)

    ADS  Google Scholar 

  • Hansryd, J., Andrekson, P.A., Westlund, M., Li, J., Hedekvist, P.O.: Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Topic Quantum Electron. 8(3), 506–520 (2002)

    ADS  Google Scholar 

  • Huang, Y., Kalyoncu, S.K., Zhao, Q., Torun, R., Boyraz, O.: Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors. Opt. Commun. 313, 186–194 (2014)

    ADS  Google Scholar 

  • Huang, H., et al.: Re-analysis of single-mode conditions for silicon rib waveguides at 1550 nm wavelength. J. Lightwave Technol. 34(16), 3811–3817 (2016)

    ADS  Google Scholar 

  • Hsieh, I.-W., Chen, X., Liu, X., Dadap, J.I., Panoiu, N.C., Chou, C.Y., Xia, F., Green, W.M., Vlasov, Y.A., Osgood, R.M.: Supercontinuum generation in silicon photonic wires. Opt. Express 15(23), 15242–15249 (2007)

    ADS  Google Scholar 

  • Jarrahi, M., Pease, R.F.W., Lee, T.H.: Spatial quantized analog-to-digital conversion based on optical beamsteering. J. Lightwave Technol. 26(14), 2219–2226 (2008)

    ADS  Google Scholar 

  • Jung, H., Xiong, C., Fong, K.Y., Zhang, X., Tang, H.X.: Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38, 2810–2813 (2013)

    ADS  Google Scholar 

  • Koos, C., Vorreau, P., Vallaitis, T., Dumon, P., Bogaerts, W., Baets, R.: All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics 3, 216–219 (2009)

    ADS  Google Scholar 

  • Levy, J.S., Gondarenko, A., Foster, M.A., Turner-Foster, A.C., Gaeta, A.L., Lipson, M.: CMOS compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics 4(1), 37–40 (2010)

    ADS  Google Scholar 

  • Li, J., Xu, K., Du, J.: Ultrabroadband and flattened dispersion in aluminum nitride slot waveguides. IEEE Photonics J. 9, 1–8 (2017)

    Google Scholar 

  • Lin, P.T., Jung, H., et al.: Low-loss aluminium nitride thin film for mid-infrared microphotonics. Laser Photonics Rev. 8(2), L23–L28 (2014)

    ADS  MathSciNet  Google Scholar 

  • Lin, Q., Zhang, J.D., Fauchet, P.M., Agrawal, G.P.: Ultrabroadband parametric generation and wavelength conversion in silicon waveguides. Opt. Express 14(11), 4786–4799 (2006)

    ADS  Google Scholar 

  • Lio, Y., Kong, M., Jiang, Y.: Transverse magnetic modes in planar slot waveguides. J. Opt. Soc. Am. B 32(10), 2052–2060 (2015)

    ADS  Google Scholar 

  • Liu, S., Xu, K., Song, Q., Cheng, Z., Tsang, H.K.: Design of mid-infrared electro-optic modulators based on aluminum nitride waveguides. J. Lightwave Technol. 34(16), 3837–3842 (2016)

    Google Scholar 

  • Martinez, A., Blasco, J., Sanchis, P., Galan, J.V., Garcia-Ruperez, J.: Jordana, Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett. 31, 1506–1511 (2010)

    ADS  Google Scholar 

  • Muellner, P., Wellenzohn, M., Hainberger, R.: Nonlinearity of optimized silicon photonic slot waveguides. Opt. Express 17, 9282–9287 (2009)

    ADS  Google Scholar 

  • Mulvad, H.C.H., Galili, M., Oxenlowe, L.K., Hu, H., Clausen, A.T., Jensen, J.B., Peucheret, C., Jeppesen, P.: Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. Opt. Express 18(2), 1438–1443 (2010)

    ADS  Google Scholar 

  • Mann, V., Ashok, N., Rastogi, V.: Coupled strip-slot waveguide design for dispersion compensation. Opt. Quant. Electron. 47, 3161–3169 (2015)

    Google Scholar 

  • Nacer, S., Aissat, A.: Optical sensing by silicon slot-based directional couplers. Opt. Quant. Electron. 44, 35–43 (2012)

    Google Scholar 

  • Qiao, Y., Tao, J., Qiu, J., Hong, X., Wu, J.: Sensitive and ultrasmall sample volume gas sensor based on a sealed slot waveguide. Appl. Opt. 58, 4708–4713 (2019)

    ADS  Google Scholar 

  • Saynatjoki, A., Karvonen, L., Alasaarela, T., Tu, X., et al.: Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition. Opt. Express 19, 26275–26282 (2011)

    ADS  Google Scholar 

  • Selvaraja, S.K., Jaenen, P., Bogaerts, W., Thourhout, D.V., Dumon, P., Baets, R.: Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. J. Lightwave Technol. 27, 76–83 (2009)

    Google Scholar 

  • Spott, L., Baehr-Jones, T., Ding, R., Liu, Y., Bojko, R., O’Malley, T., Pomerene, A., Hill, C., Reinhardt, W., Hochberg, M.: Photolithographically fabricated low-loss asymmetric silicon slot waveguides. Opt. Express 19, 10950–10958 (2011)

    ADS  Google Scholar 

  • Turner-Foster, A.C., Foster, M.A., Salem, R., Gaeta, A.L., Lipson, M.: Frequency conversion over two-thirds of an octave in silicon nanowaveguides. Opt. Express 18(3), 1904–1908 (2010)

    ADS  Google Scholar 

  • Tengattini, A., Gandolfi, D., Prtljaga, N., Anopchenko, A., Ramírez, J., Lupi, M.: Toward a 1.54 m electrically driven erbium-doped silicon slot waveguide and optical amplifier. J. Lightwave Technol. 31, 391–397 (2013)

    ADS  Google Scholar 

  • Yin, L., Lin, Q., Agrawal, G.P.: Soliton fission and supercontinuum generation in silicon waveguides. Opt. Lett. 32(4), 391–393 (2007)

    ADS  Google Scholar 

  • Zhang, L., Yue, Y., Beausoleil, R.G., Willner, A.E.: Flattened dispersion in silicon slot waveguides. Opt. Express 18(19), 20529–20534 (2010)

    ADS  Google Scholar 

  • Zhang, L., Lin, Q., Yue, Y., Yan, Y., Beausoleil, R.G., Willner, A.E.: Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt. Express 20(2), 1685–1690 (2012)

    ADS  Google Scholar 

  • Zhou, W., Cheng, Z., Wu, X., Zhu, B., Sun, X., Tsang, H.K.: Fully suspended slot waveguides for high refractive index sensitivity. Opt. Lett. 42, 1245–1248 (2017)

    ADS  Google Scholar 

  • Zhou, W., Cheng, Z., Wu, X., Sun, X., Tsang, H.K.: Fully suspended slot waveguide platform. J. Phys. 123, 063103(1–9) (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge, National Institute of Technology Patna, and Science and Engineering Research Board, Department of Science and Technology, Government of India for providing COMSOL Multiphysics simulation software, used in the current simulation work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veer Chandra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, V., Ranjan, R. Performance analysis of slot waveguide using aluminum nitride in slot region. Opt Quant Electron 52, 231 (2020). https://doi.org/10.1007/s11082-020-02353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02353-1

Keywords

Navigation