Skip to main content
Log in

FDTD simulation studies on improvement of light absorption in organic solar cells by dielectric nanoparticles

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present a systematic design and analysis of organic solar cell (OSC) by embedding dielectric nanoparticles layer at anode. Using numerical simulations, we show that there is improvement in the light absorption in the active layer of the device using nanoparticles. The nanoparticles will act as scattering medium for the incident light and hence trap the light inside the device. For the light scattered at different angles, the optical path length in the active medium is increased and this leads to more absorption of light in the active layer and thereby increase in the efficiency. The scattering efficiency and hence the absorption of solar radiation for generation of current depends on the particle size, interparticle separation and the refractive index contrast between the particles and the embedding medium. Mie theory has been used to calculate the scattering efficiency of nanoparticles. The effect on light absorption and current density of OSC due to nanoparticles has been carried out using finite difference time domain analysis. It is shown that the proposed OSC structure increases the light absorption in the active layer of the device by 40% and short circuit current density by 34%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albrecht, S., et al.: Light management in PCPDTBT:PC70BM solar cells: a comparison of standard and inverted device structures. Org. Electron. 13, 615–622 (2012)

    Article  Google Scholar 

  • Berenger, J.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)

    Google Scholar 

  • Chang, F., Li, H., Zheng, B., Qian, K., Lei, Q., Han, G., Song, Y., Shao, P.: Effect of silver nanospheres embedded in buffer layer based on organic solar cells. J Mater Sci: Mater Electron. J Mater Sci: Mater Electron 29, 1349–1355 (2018)

    Google Scholar 

  • Chen, C.-P., Lee, I.-C., Tsaia, Y.Y., Huang, C.-L., Chen, Y.-C., Huang, G.-W.: Efficient organic solar cells based on PTB7/PC71BM blend film with embedded different shapes silver nanoparticles into PEDOT:PSS as hole transporting layers. Org. Electron. 62, 95–101 (2018)

    Article  ADS  Google Scholar 

  • Cocoyer, C., Rochaa, L., Sicot, L., Geffroy, B., Bettignies, R., Sentein, C., Debuisschert, C.F., Raimond, P.: Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances. Appl. Phys. Lett. 88, 133108-1–133108-3 (2006)

    Article  ADS  Google Scholar 

  • Forberich, K., Dennler, G., Scharber, M.C., Hingerl, K., Fromherz, T., Brabec, C.J.: Performance improvement of organic solar cells with moth eye anti-reflection coating. Thin Solid Films 516, 7167–7170 (2008)

    Article  ADS  Google Scholar 

  • Hoppe, H., Sariciftci, N.S.: Organic solar cells: An overview. J. Mater. Res. 19, 1924–1945 (2004)

    Article  ADS  Google Scholar 

  • Itskos, G., Othonos, A., Rauch, T., Tedde, S.F., Hayden, O., Kovalenko, M.V., Heiss, W., Choulis, S.A.: Optical properties of organic semiconductor blends with near-infrared quantum-dot sensitizers for light harvesting applications. Adv. Energy Mater. 1, 802–812 (2011)

    Article  Google Scholar 

  • Le, K.Q., Abass, A., Maes, B., Bienstman, P., Alù, A.: Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells. Opt. Express 20, A39–A50 (2012)

    Article  ADS  Google Scholar 

  • Lee, W.H., Chuang, S.Y., Chen, H.L., Su, W.F., Lin, C.H.: Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode. Thin Solid Films 518, 7450–7454 (2010)

    Article  ADS  Google Scholar 

  • Li, S., Le, Y., Zhao, W., Yan, H., Lang, B., Liu, D., Li, W., Ade, H., Hou, J.: A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc. 140, 7159–7167 (2018)

    Article  Google Scholar 

  • Maisch, P., Tam, K.C., Lucera, L., Egelhaaf, H.-J., Scheiber, H., Maier, E., Brabec, C.J.: Inkjet printed silver nanowire percolation networks as electrodes for highly efficient semitransparent organic solar cells. Org. Electron. 3, 139–143 (2016)

    Article  Google Scholar 

  • Meng, L., et al.: Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094–1098 (2018)

    Article  ADS  Google Scholar 

  • Moreno, F., García-Cámara, B., Saiz, J.M., González, F.: Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles. Opt. Express 16, 12487–12504 (2008)

    Article  ADS  Google Scholar 

  • N’Konou, K., Peres, L., Torchio, P.: Optical absorption modeling of plasmonic organic solar cells embedding silica-coated silver nanospheres. Plasmonics 13, 297–303 (2018)

    Article  Google Scholar 

  • Otieno, F., Shumbula, N.P., Airo, M., Mbuso, M., Moloto, N., Erasmus, R.M., Quandt, A., Wamwangi, D.: Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer. AIP Adv. 7, 085302-1–085302-10 (2017)

    Article  ADS  Google Scholar 

  • Peer, A., Biswas, R.: Nanophotonic organic solar cell architecture for advanced light trapping with dual photonic crystals. ACS Photonics 1, 840–847 (2014)

    Article  Google Scholar 

  • Qin, Y., Chen, Y., Cui, Y., Zhang, S., Yao, H., Huang, J., Li, W., Zheng, Z., Hou, J.: Achieving 12.8% efficiency by simultaneously improving open circuit voltage and short circuit current density in tandem organic solar cells. Adv. Mater. 29, 1606340-1–1606340-7 (2017)

    Google Scholar 

  • RSoft RCAD, Fullwave and Solar Cell Utility Manual (2014). https://optics.synopsys.com/rsoft/

  • Schubert, S., Meiss, J., Meskamp, L.M., Leo, K.: Improvement of transparent metal top electrodes for organic solar cells by introducing a high surface energy seed layer. Adv. Energy Mater. 3, 438–443 (2013)

    Article  Google Scholar 

  • Shaffer, P.T.B.: Refractive index, dispersion, and birefringence of silicon carbide polytypes. Appl. Opt. 10, 1034–1036 (1971)

    Article  ADS  Google Scholar 

  • Shao, P., et al.: Facile embedding of SiO2 nanoparticles in organic solar cells for performance improvement. Org. Electron. 50, 77–81 (2017)

    Article  Google Scholar 

  • Shin, J., et al.: Harvesting near- and far-field plasmonic enhancements from large size gold nanoparticles for improved performance in organic bulk heterojunction solar cells. Org. Electron. 66, 94–101 (2019)

    Article  Google Scholar 

  • Singh, J., Prasad, N., Nirwal, V.S., Gautam, K., Peta, K.R., Bhatnagar, P.K.: Optical absorption and emission characterization of P3HT: graphene composite for its prospective photovoltaic application. AIP Conf. Proc. 1731, 050129-1–050129-3 (2016)

    Google Scholar 

  • Tada, A., Geng, Y., Wei, Q., Hashimoto, K., Tajima, K.: Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nat. Mater. 10, 450–455 (2011)

    Article  ADS  Google Scholar 

  • Taff, Y., Apter, B., Katz, E.A., Efron, U.: Modeling plasmonic efficiency enhancement in organic photovoltaics. Appl. Opt. 54, 7957–7961 (2015)

    Article  ADS  Google Scholar 

  • Taflove, A., Hagness, S.C.: Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd edn. Artech House, Norwood (2005)

    MATH  Google Scholar 

  • Wang, W., Hao, Y., Cui, Y., Tian, X., Zhang, Y., Wang, H., Shi, F., Wei, B., Huang, W.: High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices. Opt. Express 22, A376–A385 (2014)

    Article  ADS  Google Scholar 

  • Wood, D.L., Nassau, K.: Refractive index of cubic zirconia stabilized with yttria. Appl. Opt. 16, 2978–2981 (1982)

    Article  ADS  Google Scholar 

  • Yang, H., Ding, Q., Li, B.Q., Jiang, X., Zhang, M.: Synergetic scattering of SiO2 and Ag nanoparticles for light-trapping enhancement in organic bulk heterojunction. J Nanopart Res. 20, 29-1–29-8 (2018)

    Article  Google Scholar 

  • Zhou, Y., Zhang, F., Tvingstedt, K., Tian, W., Inganäs, O.: Multifolded polymer solar cells on flexible substrates. Appl. Phys. Lett. 93, 033302-1–033302-3 (2008)

    ADS  Google Scholar 

  • Zilio, S.D., Tvingstedt, K., Inganäs, O., Tormen, M.: Fabrication of a light trapping system for organic solar cells. Microelectron. Eng. 86, 1150–1154 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhi Mann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mann, V., Rastogi, V. FDTD simulation studies on improvement of light absorption in organic solar cells by dielectric nanoparticles. Opt Quant Electron 52, 233 (2020). https://doi.org/10.1007/s11082-020-02328-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02328-2

Keywords

Navigation