Skip to main content
Log in

Optical properties of various graphitic structures deposited by PECVD

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, we report on the comparative study of the optical properties of different graphitic structures such as stacked graphite (GR), graphene oxide (GO) and few-layers of graphene (FLG). Plasma enhanced chemical vapour deposition technique employing acetylene (C2H2) as precursor gas used to deposit the different graphitic nanosheets on copper substrates. The influence of mixture gas ratio (C2H2/H2) on the structure of nanosheet was examined. Investigation of detailed structure of nanosheets was performed by different characterization techniques such as X-ray diffraction, attenuated total reflectance-Föurier transform infrared and Raman spectroscopy. Optical properties of stacked graphite, graphene oxide and few layers of graphene sheets were studied. The present results reveal that how the optical properties change due to the variations in structure parameters of sheets. The refractive index results indicate the anomalous dispersion due to strong absorption featured for graphitic structures. The real dielectric constant of GR and FLG sheets reveals independent frequency behavior and approach to zero but GO sheet shows a broadband peak from 1.75 to 4.75 eV which attributed to oxygen functional group behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aravind, S.S.J., Eswaraiah, V., Ramaprabhu, S.: Facile synthesis of one dimensional graphene wrapped carbon nanotube composites by chemical vapour deposition. J. Mater. Chem. 21, 15179–15182 (2011)

    Article  Google Scholar 

  • Arshak, A., Zleetni, S., Arshak, K.: γ-Radiation sensor using optical and electrical properties of manganese phthalocyanine (MnPc) thick film. Sensor 2, 174–184 (2002)

    Article  Google Scholar 

  • Atyia, H.E., Hegab, N.: Optical spectroscopy and dispersion parameters of Ge 15 Se 60 X 25 (X- as or Sn) amorphous thin films. Eur. Phys. J. Appl. Phys. 63, 10301 (2013). https://doi.org/10.1051/epjap/2013130099

    Article  ADS  Google Scholar 

  • Bae, S., Kim, H., Lee, Y., Xu, X.F., Park, J.S., Zheng, Y., et al.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)

    Article  ADS  Google Scholar 

  • Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  ADS  Google Scholar 

  • Boudaoud, L., Benramdane, N., Desfeux, R., Khelifa, B., Mathieu, C.: Structural and optical properties of MoO3 and V2O5 thin films prepared by spray pyrolysis. Catal. Today 113, 230–234 (2006)

    Article  Google Scholar 

  • Chen, C., Cai, W., Long, M., Zhou, B., Wu, Y., Wu, D., Feng, Y.: Synthesis of visible-light responsive GO/TiO2 composites with p/n heterojunction. ACS Nano 4, 6425–6432 (2010)

    Article  Google Scholar 

  • Cushing, S.K., Li, M., Huang, F., Wu, N.: Origin of strong excitation wavelength dependent fluorescence of GO. ACS Nano 8(1), 1002–1013 (2013)

    Article  Google Scholar 

  • Deka, M.J., Chowdhury, D.: Surface charge induced tuning of electrical properties of CVD assistedgraphene and functionalized graphene sheets. J. Mater. Sci. Technol. 35, 151–158 (2019)

    Article  Google Scholar 

  • Delzeit, L., McAninch, I., Cruden, B.A., Hash, D., Chen, B., Han, J., et al.: Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J. Appl. Phys. 91(9), 6027–6033 (2002)

    Article  ADS  Google Scholar 

  • Denysenko, I.B., Xu, S., Long, J.D., Rutkevych, P.P., Azarenkov, N.A., Ostrikov, K.: Inductively coupled Ar/CH4/H-2 plasmas for low-temperature deposition of ordered carbon nanostructures. J. Appl. Phys. 95(5), 2713–2724 (2004)

    Article  ADS  Google Scholar 

  • El-Bana, M., Bohdan, R., Fouad, S.: Optical characteristics and holographic gratings recording on As30Se70 thin films. J. Alloy. Comp. 686, 115–121 (2016)

    Article  Google Scholar 

  • El-Bana, M., El Radaf, I., Fouad, S., Sakr, G.: Structural and optoelectrical properties of nanostructured LiNiO 2 thin films grown by spray pyrolysis technique. J. Alloy. Comp. 705, 333–339 (2017)

    Article  Google Scholar 

  • El-Nahass, M., Farag, A.: Structural, optical and dispersion characteristics of nanocrystalline GaN films prepared by MOVPE. Optic. Laser. Technol. 44, 497–503 (2012)

    Article  ADS  Google Scholar 

  • Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S.: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19, 7098–7105 (2009)

    Article  Google Scholar 

  • Gao, Y., Hao, P.H.: Mechanical properties of monolayer graphene under tensile and compressive loading. Phys. E Lowdimens. Syst. Nanostruct. 41, 1561–1566 (2009)

    Article  ADS  Google Scholar 

  • Ghobadi, N.: Band gap determination using absorption spectrum fitting procedure. Int. Nano Lett. 3, 2–4 (2013)

    Article  Google Scholar 

  • Hiramatsu, M., Shiji, K., Amano, H., Hori, M.: Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 84(23), 4708–4710 (2004)

    Article  ADS  Google Scholar 

  • Ilkhechi, N.N., Dousi, F., Kaleji, B.K., Salahi, E.: Optical and structural properties of TiO2 nanocomposite doped by Si and Cu at high temperature. Opt. Quant. Electron. 47, 1751–1763 (2015). https://doi.org/10.1007/s11082-014-0033-x

    Article  Google Scholar 

  • Ilkhechi, N.N., Akbarpour, M.R., Yavari, R., Azar, Z.: Sn4+ and La3+ co doped TiO2 nanoparticles and their optical, photocatalytic and antibacterial properties under visible light. J. Mater. Sci. Mater. Electron. 28, 16658–16664 (2017a). https://doi.org/10.1007/s10854-017-7577-z

    Article  Google Scholar 

  • Ilkhechi, N.N., Kaleji, B.K., Mozammel, M., Ghobadi, N.: Effect of Cu and Zr co-doped SiO2 nanoparticles on the stability of phases (quartz-tridymite-cristobalite) and degradation of methyl orange at high temperature. Silicon 9, 293–299 (2017b). https://doi.org/10.1007/s12633-016-9416-x

    Article  Google Scholar 

  • Ilkhechi, N.N., Ghobadi, N., Akbarpour, M.R.: Enhanced optical and photo catalytic properties of V and La co doped TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 6426–6434 (2017c). https://doi.org/10.1007/s10854-016-6328-x

    Article  Google Scholar 

  • Ilkhechi, N.N., Ghobadi, N., Yahyavi, F.: Enhanced optical and hydrophilic properties of V and La co-doped ZnO thin films. Opt. Quant. Electron. 49, 39 (2017d). https://doi.org/10.1007/s11082-016-0867-5

    Article  Google Scholar 

  • Jeong, H.Y., Kim, J.Y., Kim, J.W., Hwang, J.O., Kim, J.E., Lee, J.Y., Yoon, T.H., Cho, B.J., Kim, S.O., Ruoff, R.S., Choi, S.Y.: GO thin films for flexible nonvolatile memory applications. Nano Lett. 10, 4381–4386 (2010)

    Article  ADS  Google Scholar 

  • Kana, J.K., Ndjaka, J., Vignaud, G., Gibaud, A., Maaza, M.: Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry. Optic. Commun. 284, 807–812 (2011)

    Article  ADS  Google Scholar 

  • Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  ADS  Google Scholar 

  • Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I.A., Car, R.: Ramanspectra of GR oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008)

    Article  ADS  Google Scholar 

  • Li, X., Cai, W., Colombo, L., Ruoff, R.S.: Evolution of graphene growth on Ni and Cu by carbon isotope labelling. Nano Lett. 9, 4268–4272 (2009)

    Article  ADS  Google Scholar 

  • Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)

    Article  ADS  Google Scholar 

  • Maheshwar, S., Madhuri, S.: Carbon nanoforms and applications. McGraw-Hill, New York (2010)

    Google Scholar 

  • Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M.: Improved synthesis of GO. ACS Nano 4, 4806–4814 (2010)

    Article  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  • Oostinga, J.B., Heersche, H.B., Liu, X., Morpurgo, A.F., Vandersypen, L.M.K.: Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151–157 (2008)

    Article  ADS  Google Scholar 

  • Pham, T.A., Choi, B.C., Lim, K.T., Jeong, Y.T.: A simple approach for immobilization of gold nanoparticles on GO sheets by covalent bonding. Appl. Surf. Sci. 257, 3350–3357 (2011)

    Article  ADS  Google Scholar 

  • Phiri, J., Johansson, L.-S., Gane, P., Maloney, T.: A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide- and reduced graphene oxide-doped microfibrillated cellulose nanocomposites. Compos. B 147, 104–113 (2018)

    Article  Google Scholar 

  • Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009)

    Article  Google Scholar 

  • Rawat, A., Mahavar, H.K., Chauhan, S., Tanwar, A., Singh, P.J.: Optical band gap of polyvinylpyrrolidone/Polyacrylamide blend film thin films. Indian J. Pure Appl. Phys. 50, 100–104 (2012)

    Google Scholar 

  • Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)

    Article  ADS  Google Scholar 

  • Shang, J., Ma, L., Li, J., Ai, W., Yu, T., Gurzadyan, G.G.: The origin of fluorescence from GO. Sci. Rep. 2, 792 (2012)

    Article  ADS  Google Scholar 

  • Shen, Q., Katayama, K., Sawada, T., Toyoda, T.: Characterization of electron transfer from CdSe quantum dots to nanostructured TiO 2 electrode using a near-field heterodyne transient grating technique. Thin Solid Films 516, 5927–5930 (2008)

    Article  ADS  Google Scholar 

  • Stampfer, C., Schurtenberger, E., Molitor, F., Guttinger, J., Ihn, T., Ensslin, K.: Tunable graphene single electron transistor. Nano Lett. 8, 2378–2383 (2008)

    Article  ADS  Google Scholar 

  • Stampfer, C., Guttinger, J., Hellmuller, S., Molitor, F., Ensslin, K., Ihn, T.: Energy gaps in etched graphene nanoribbons. Phys. Rev. Lett. 102, 056403 (2009)

    Article  ADS  Google Scholar 

  • Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  ADS  Google Scholar 

  • Su, R., Lin, S.F., Chen, D.Q., Chen, G.H.: Study on the absorption coefficient of reduced graphene oxide dispersion. J. Phys. Chem. C 118, 12520–12525 (2014)

    Article  Google Scholar 

  • Wang, X., Dou, W.: Preparation of GR oxide (GO) and the thermal stability of silicone rubber/GO nanocomposites. Thermochim. Acta 529, 25–28 (2012)

    Article  ADS  Google Scholar 

  • Wemple, S.: Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7(8), 3767–3777 (1973). https://doi.org/10.1103/physrevb.7.3767

    Article  ADS  Google Scholar 

  • Wemple, S., DiDomenico Jr., M.: Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3(4), 1338–1351 (1971). https://doi.org/10.1103/physrevb.3.1338

    Article  ADS  Google Scholar 

  • Yu, D., Dai, L.: Self-assembled graphene/carbon nanotube hybrid films for super-capacitors. J. Phy. Chem. Lett. 1, 467–470 (2010)

    Article  Google Scholar 

  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and GO: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We would also like to show our gratitude to Dr. M. Naziruddin Khan of the physics Department, Islamic university of Madinah for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safwat Hassaballa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-khattib, M.G., Samir, A. & Hassaballa, S. Optical properties of various graphitic structures deposited by PECVD. Opt Quant Electron 52, 217 (2020). https://doi.org/10.1007/s11082-020-02317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02317-5

Keywords

Navigation