Skip to main content

A novel metamaterial design for achieving a large group index via classical electromagnetically induced reflectance

Abstract

In a numerical study, we propose a metamaterial structure mimicking electromagnetically induced reflectance at microwave frequencies. The structure contains imprinted metallic elements, including two long and two short wires on a dielectric substrate. In analyzing different loss mechanisms affecting the resonance behavior of the structure, we study effects of temperature and metallic thickness in detail, and see an enhanced resonance behavior as the temperature is reduced or the metallic thickness is increased. In applications, we first show that the proposed structure can be used as a sensitive microwave sensor. Furthermore, the group index of the structure is calculated to be 563.8 at 15.14 GHz, which can also be further increased by reducing temperature and increasing metallic thickness. Even this value is high compared to the values reported in the literature at microwave frequencies, and makes the structure a good candidate for slow light applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Alici, K.B., Ozbay, E.: Low temperature behavior of magnetic metamaterial elements. New. J. Phys. 11, 043015 (2009)

    Article  Google Scholar 

  • Alipour, A.H., Mir, A.: Design and simulation of a high-selective plasmon-induced reflectance in coupled dielectric-metal-dielectric nano-structure for senor devices and slow light propagation. Plasmonics 14, 511–521 (2019)

    Article  Google Scholar 

  • Alzar, G.L.G., Martinez, M.A.G., Nussensveig, P.: Classical analog of electromagnetically induced transparency. Am. J. Phys. 70, 37–41 (2002)

    Article  ADS  Google Scholar 

  • Ashcroft, N.W., Mermim, N.D.: Solid State Physics. Holt, Rineheart and Winston (1976)

  • Askari, M., Zakery, A.: Effects of multi-layer stacking along the propagation direction of an infrared metamaterial on the electromagnetic response of the structure. Optik 127, 1408–1413 (2015)

    Article  ADS  Google Scholar 

  • Askari, M., Zakery, A., Jahromi, A.S.: A low loss semi H-shaped negative refractive index metamaterial at \(4.725\) THz. Photon. Nano. Fund. Appl. 30, 78–83 (2018)

    Article  ADS  Google Scholar 

  • Bagci, F., Akaoglu, B.: A polarization independent electromagnetically induced transparency like metamaterial with large group delay and delay-bandwidth product. J. Appl. Phys. 123, 173101 (2018)

    Article  ADS  Google Scholar 

  • Bajcsy, M., Zibrov, A.S., Lukin, M.D.: Stationary pulses of light in an atomic medium. Nature 426, 638–641 (2003)

    Article  ADS  Google Scholar 

  • Boller, K.J., Imamoglu, A., Harris, S.E.: Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991)

    Article  ADS  Google Scholar 

  • Cong, L., Tan, S., Yahiaoui, R., Yan, F., Zhang, W., Singh, R.: Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl. Phys. Lett. 106, 031107 (2015)

    Article  ADS  Google Scholar 

  • Dong, Z.-G., Liu, H., Xu, M.-X., Li, T., Wang, S.-M., Zhu, S.-N., Zhang, X.: Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars. Opt. Express 18, 18229–18234 (2010)

    Article  ADS  Google Scholar 

  • Fedotov, V.A., Rose, M., Prosvirnin, S.L., Papasimakis, N., Zheludev, N.I.: Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007)

    Article  ADS  Google Scholar 

  • Fleischhauer, M., Lukin, M.D.: Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000)

    Article  ADS  Google Scholar 

  • Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  Google Scholar 

  • Güney, D.Ö., Koschny, T., Soukoulis, G.M.: Reducing ohmic losses in metamaterials by geometrical tailoring. Phys. Rev. B 80, 125129 (2009)

    Article  ADS  Google Scholar 

  • Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397, 594–598 (1991)

    Article  ADS  Google Scholar 

  • Hayt, W.H., Buck, J.A.: Engineering Electromagnetics. Mc Graw-Hill, New York (2012)

    Google Scholar 

  • He, X., Zhang, Q., Lu, G., Ying, G., Wu, F., Jiang, J.: Tunable ultra sensitive terahertz sensor based on complementary graphene metamaterials. RSC Adv. 6, 52212–52218 (2016)

    Article  Google Scholar 

  • Jahromi, A.S., Askari, M.: An extremely large group index via electromagnetically induced transparency in metamaterials. J. Eur. Opt. Soc. Rap. Public. 9, 14048 (2014)

    Article  Google Scholar 

  • Jain, A., Tassin, P., Koschny, T., Soukoulis, C.M.: Large quality factors in sheet metamaterials made from dark dielectric meta-atoms. Phys. Rev. Lett. 112, 11740 (2014)

    Article  Google Scholar 

  • Jiang, J., Zhang, Q., Ma, Q., Yan, S., Wu, F., He, X.: Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials. Opt. Mater. Express 5, 1962–1971 (2016)

    Article  ADS  Google Scholar 

  • Katsarakis, N., Koschny, T., Kafesaki, M., Economou, E.N., Soukoulis, C.M.: Electric coupling to the magnetic resonance of split ring resonators. Appl. Phys. Lett. 84, 2943–2945 (2004)

    Article  ADS  Google Scholar 

  • Keshavarz, A., Vafapour, Z.: Thermo-optical applications of a novel terahertz semiconductor metamaterial design. J. Opt. Soc. Am. B 36, 35–41 (2019)

    Article  ADS  Google Scholar 

  • Kurter, C., Tassin, P., Zhang, L., Koschny, T., Zhuravel, A.P., Ustinov, A.V., Anlage, S.M., Soukoulis, C.M.: Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys. Rev. Lett. 107, 043901 (2011)

    Article  ADS  Google Scholar 

  • Lal, S., Link, S., Halas, N.J.: Nano-optics from sensing to waveguiding. Nat. photonics 1, 641–648 (2007)

    Article  ADS  Google Scholar 

  • Lee, H.J., Lee, H.S., Yoo, H.S., Yook, J.G.: DNA sensing using split ring resonator alone at microwave regime. J. Appl. Phys. 108, 014908 (2010)

    Article  ADS  Google Scholar 

  • Liu, C., Dutton, Z., Behroozi, C.H., Hau, L.V.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)

    Article  ADS  Google Scholar 

  • Liu, N., Langguth, L., Weiss, T., Kästel, J., Fleischhauer, M., Pfau, T., Giessen, H.: Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758–762 (2009)

    Article  ADS  Google Scholar 

  • Liu, N., Weiss, Th, Mesch, M., Langguth, L., Eigenthaler, U., Hirscher, M., Sönnichsen, C., Giessen, H.: Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10, 1103–1107 (2009)

    Article  ADS  Google Scholar 

  • Liu, Y., Zhang, Y.Q., Jin, X.R., Zhang, S., Lee, Y.P.: Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect. Opt. Commun. 371, 173–177 (2016)

    Article  ADS  Google Scholar 

  • Matsko, A.B., kocharovskaya, O., Rostovtsev, Y., Welch, G.R., Zibrov, A.S., Scully, M.O.: Slow, Ultraslow, Stored, and Frozen Light. Adv. At. Mol. Opt. Phys. 46, 191–242 (2001)

    Article  ADS  Google Scholar 

  • Niakan, N., Askari, M., Zakery, A.: High Q-factor and large group delay at microwave wavelengths via electromagnetically induced transparency in metamaterials. J. Opt. Soc. Am. B 29, 2329–2333 (2012)

    Article  ADS  Google Scholar 

  • Novotny, L.: Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007)

    Article  ADS  Google Scholar 

  • Papasimakis, N., Fedotov, V.A., Zheludev, N.I., Prosvirnin, S.L.: Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 101, 253903 (2008)

    Article  ADS  Google Scholar 

  • Papasimakis, N., Fu, Y.H., Fedotov, V.A., Prosvirnin, S.L., Tsai, D.P., Zheludev, N.I.: Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl. Phys. Lett. 94, 211902 (2009)

    Article  ADS  Google Scholar 

  • Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  • Rashed, A.R., Gudulluoglu, B., Yun, H.W., Habib, M., Boyaci, I.H., Hong, S.H., Ozbay, E., Caglayan, H.: Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits. Sci. Rep. 8, 11457 (2018)

    Article  ADS  Google Scholar 

  • Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photonics 1, 41–48 (2006)

    Article  ADS  Google Scholar 

  • Sherry, L.J., Rongchao, J., Mirkin, C.A., Schatz, G.C., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett. 6, 2060–2065 (2006)

    Article  ADS  Google Scholar 

  • Smith, D.R., Vier, D.C., Koschny, T., Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005)

    Article  ADS  Google Scholar 

  • Soukoulis, C.M., Linden, S., Wegener, M.: Negative refractive index at optical wavelengths. Science 315, 47–49 (2007)

    Article  Google Scholar 

  • Tassin, P., Lei Zhang, Th, Koschny, E.N., Economou, Soukoulis C.M: Low loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett. 102, 053901 (2009)

    Article  ADS  Google Scholar 

  • Tassin, P., Koschny, T., Kafesaki, M., Soukoulis, C.M.: A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat. Photonics 6, 259–264 (2012)

    Article  ADS  Google Scholar 

  • Vafapour, Z.: Large group delay in a microwave metamaterial analogue of electromagnetically induced reflectance. J. Opt. Soc. Am. A 35, 417–422 (2018)

    Article  ADS  Google Scholar 

  • Valentine, J., Li, J., Zentgraf, T., Bartal, G., Zhang, X.: An optical cloak made of dielectrics. Nat. Mater. 8, 568–571 (2009)

    Article  ADS  Google Scholar 

  • Wang, H., Brandl, D.W., Le, F., Nordlander, P., Halas, N.J.: Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006)

    Article  ADS  Google Scholar 

  • Zhang, S., Genov, D.A., Wang, Y., Liu, M., Zhang, X.: Plasmon induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008)

    Article  ADS  Google Scholar 

  • Zhang, L., Tassin, P., Koschny, T., Kurter, C., Anlage, S.M., Soukoulis, C.M.: Large group delay in a microwave metamaterial analogue of electromagnetically induced transparency. Appl. Phys. Lett. 97, 241904 (2010)

    Article  ADS  Google Scholar 

  • Zhu, L., Zhao, X., Zhao, C.H., Dong, L., Miao, F.J., Wang, C.H., Guo, J.: Low loss and high transmission electromagnetically induced transparency effect in cylindrical through-hole dielectric cubes. Prog. Elec. Res. M. 76, 207–215 (2018)

    Article  Google Scholar 

  • Zielińaska-Raczyńska, S., Ziemkiewicz, D.: Frequency shifts of radiating particles moving in EIT metamaterials. J. Opt. Soc. Am. B 33, 412–419 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Askari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Askari, M., Hosseini, M.V. A novel metamaterial design for achieving a large group index via classical electromagnetically induced reflectance. Opt Quant Electron 52, 191 (2020). https://doi.org/10.1007/s11082-020-02302-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02302-y

Keywords

  • Electromagnetically induced transparency
  • Group index
  • Plasmonic sensing
  • Resonance
  • Slow-light devices