Abstract
In a numerical study, we propose a metamaterial structure mimicking electromagnetically induced reflectance at microwave frequencies. The structure contains imprinted metallic elements, including two long and two short wires on a dielectric substrate. In analyzing different loss mechanisms affecting the resonance behavior of the structure, we study effects of temperature and metallic thickness in detail, and see an enhanced resonance behavior as the temperature is reduced or the metallic thickness is increased. In applications, we first show that the proposed structure can be used as a sensitive microwave sensor. Furthermore, the group index of the structure is calculated to be 563.8 at 15.14 GHz, which can also be further increased by reducing temperature and increasing metallic thickness. Even this value is high compared to the values reported in the literature at microwave frequencies, and makes the structure a good candidate for slow light applications.
This is a preview of subscription content, access via your institution.










References
Alici, K.B., Ozbay, E.: Low temperature behavior of magnetic metamaterial elements. New. J. Phys. 11, 043015 (2009)
Alipour, A.H., Mir, A.: Design and simulation of a high-selective plasmon-induced reflectance in coupled dielectric-metal-dielectric nano-structure for senor devices and slow light propagation. Plasmonics 14, 511–521 (2019)
Alzar, G.L.G., Martinez, M.A.G., Nussensveig, P.: Classical analog of electromagnetically induced transparency. Am. J. Phys. 70, 37–41 (2002)
Ashcroft, N.W., Mermim, N.D.: Solid State Physics. Holt, Rineheart and Winston (1976)
Askari, M., Zakery, A.: Effects of multi-layer stacking along the propagation direction of an infrared metamaterial on the electromagnetic response of the structure. Optik 127, 1408–1413 (2015)
Askari, M., Zakery, A., Jahromi, A.S.: A low loss semi H-shaped negative refractive index metamaterial at \(4.725\) THz. Photon. Nano. Fund. Appl. 30, 78–83 (2018)
Bagci, F., Akaoglu, B.: A polarization independent electromagnetically induced transparency like metamaterial with large group delay and delay-bandwidth product. J. Appl. Phys. 123, 173101 (2018)
Bajcsy, M., Zibrov, A.S., Lukin, M.D.: Stationary pulses of light in an atomic medium. Nature 426, 638–641 (2003)
Boller, K.J., Imamoglu, A., Harris, S.E.: Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991)
Cong, L., Tan, S., Yahiaoui, R., Yan, F., Zhang, W., Singh, R.: Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl. Phys. Lett. 106, 031107 (2015)
Dong, Z.-G., Liu, H., Xu, M.-X., Li, T., Wang, S.-M., Zhu, S.-N., Zhang, X.: Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars. Opt. Express 18, 18229–18234 (2010)
Fedotov, V.A., Rose, M., Prosvirnin, S.L., Papasimakis, N., Zheludev, N.I.: Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007)
Fleischhauer, M., Lukin, M.D.: Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000)
Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)
Güney, D.Ö., Koschny, T., Soukoulis, G.M.: Reducing ohmic losses in metamaterials by geometrical tailoring. Phys. Rev. B 80, 125129 (2009)
Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397, 594–598 (1991)
Hayt, W.H., Buck, J.A.: Engineering Electromagnetics. Mc Graw-Hill, New York (2012)
He, X., Zhang, Q., Lu, G., Ying, G., Wu, F., Jiang, J.: Tunable ultra sensitive terahertz sensor based on complementary graphene metamaterials. RSC Adv. 6, 52212–52218 (2016)
Jahromi, A.S., Askari, M.: An extremely large group index via electromagnetically induced transparency in metamaterials. J. Eur. Opt. Soc. Rap. Public. 9, 14048 (2014)
Jain, A., Tassin, P., Koschny, T., Soukoulis, C.M.: Large quality factors in sheet metamaterials made from dark dielectric meta-atoms. Phys. Rev. Lett. 112, 11740 (2014)
Jiang, J., Zhang, Q., Ma, Q., Yan, S., Wu, F., He, X.: Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials. Opt. Mater. Express 5, 1962–1971 (2016)
Katsarakis, N., Koschny, T., Kafesaki, M., Economou, E.N., Soukoulis, C.M.: Electric coupling to the magnetic resonance of split ring resonators. Appl. Phys. Lett. 84, 2943–2945 (2004)
Keshavarz, A., Vafapour, Z.: Thermo-optical applications of a novel terahertz semiconductor metamaterial design. J. Opt. Soc. Am. B 36, 35–41 (2019)
Kurter, C., Tassin, P., Zhang, L., Koschny, T., Zhuravel, A.P., Ustinov, A.V., Anlage, S.M., Soukoulis, C.M.: Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys. Rev. Lett. 107, 043901 (2011)
Lal, S., Link, S., Halas, N.J.: Nano-optics from sensing to waveguiding. Nat. photonics 1, 641–648 (2007)
Lee, H.J., Lee, H.S., Yoo, H.S., Yook, J.G.: DNA sensing using split ring resonator alone at microwave regime. J. Appl. Phys. 108, 014908 (2010)
Liu, C., Dutton, Z., Behroozi, C.H., Hau, L.V.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)
Liu, N., Langguth, L., Weiss, T., Kästel, J., Fleischhauer, M., Pfau, T., Giessen, H.: Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758–762 (2009)
Liu, N., Weiss, Th, Mesch, M., Langguth, L., Eigenthaler, U., Hirscher, M., Sönnichsen, C., Giessen, H.: Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10, 1103–1107 (2009)
Liu, Y., Zhang, Y.Q., Jin, X.R., Zhang, S., Lee, Y.P.: Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect. Opt. Commun. 371, 173–177 (2016)
Matsko, A.B., kocharovskaya, O., Rostovtsev, Y., Welch, G.R., Zibrov, A.S., Scully, M.O.: Slow, Ultraslow, Stored, and Frozen Light. Adv. At. Mol. Opt. Phys. 46, 191–242 (2001)
Niakan, N., Askari, M., Zakery, A.: High Q-factor and large group delay at microwave wavelengths via electromagnetically induced transparency in metamaterials. J. Opt. Soc. Am. B 29, 2329–2333 (2012)
Novotny, L.: Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007)
Papasimakis, N., Fedotov, V.A., Zheludev, N.I., Prosvirnin, S.L.: Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 101, 253903 (2008)
Papasimakis, N., Fu, Y.H., Fedotov, V.A., Prosvirnin, S.L., Tsai, D.P., Zheludev, N.I.: Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl. Phys. Lett. 94, 211902 (2009)
Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)
Rashed, A.R., Gudulluoglu, B., Yun, H.W., Habib, M., Boyaci, I.H., Hong, S.H., Ozbay, E., Caglayan, H.: Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits. Sci. Rep. 8, 11457 (2018)
Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photonics 1, 41–48 (2006)
Sherry, L.J., Rongchao, J., Mirkin, C.A., Schatz, G.C., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett. 6, 2060–2065 (2006)
Smith, D.R., Vier, D.C., Koschny, T., Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005)
Soukoulis, C.M., Linden, S., Wegener, M.: Negative refractive index at optical wavelengths. Science 315, 47–49 (2007)
Tassin, P., Lei Zhang, Th, Koschny, E.N., Economou, Soukoulis C.M: Low loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett. 102, 053901 (2009)
Tassin, P., Koschny, T., Kafesaki, M., Soukoulis, C.M.: A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat. Photonics 6, 259–264 (2012)
Vafapour, Z.: Large group delay in a microwave metamaterial analogue of electromagnetically induced reflectance. J. Opt. Soc. Am. A 35, 417–422 (2018)
Valentine, J., Li, J., Zentgraf, T., Bartal, G., Zhang, X.: An optical cloak made of dielectrics. Nat. Mater. 8, 568–571 (2009)
Wang, H., Brandl, D.W., Le, F., Nordlander, P., Halas, N.J.: Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006)
Zhang, S., Genov, D.A., Wang, Y., Liu, M., Zhang, X.: Plasmon induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008)
Zhang, L., Tassin, P., Koschny, T., Kurter, C., Anlage, S.M., Soukoulis, C.M.: Large group delay in a microwave metamaterial analogue of electromagnetically induced transparency. Appl. Phys. Lett. 97, 241904 (2010)
Zhu, L., Zhao, X., Zhao, C.H., Dong, L., Miao, F.J., Wang, C.H., Guo, J.: Low loss and high transmission electromagnetically induced transparency effect in cylindrical through-hole dielectric cubes. Prog. Elec. Res. M. 76, 207–215 (2018)
Zielińaska-Raczyńska, S., Ziemkiewicz, D.: Frequency shifts of radiating particles moving in EIT metamaterials. J. Opt. Soc. Am. B 33, 412–419 (2018)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Askari, M., Hosseini, M.V. A novel metamaterial design for achieving a large group index via classical electromagnetically induced reflectance. Opt Quant Electron 52, 191 (2020). https://doi.org/10.1007/s11082-020-02302-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11082-020-02302-y
Keywords
- Electromagnetically induced transparency
- Group index
- Plasmonic sensing
- Resonance
- Slow-light devices