Skip to main content

Advertisement

Log in

Femtosecond laser surface engineering of biopolymer ceramic scaffolds coated with ZnO by low temperature atomic layer deposition method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Surface femtosecond laser texturing of biopolymer and biopolymer/ceramic composites with subsequent ZnO film deposition on the samples by low temperature Atomic Layer Deposition (ALD) method was performed. In the current study, the deposition of ZnO layers was implemented at temperature 50 °C under pressure of 2 mbar. In order to investigate the effect of diverse ZnO thin films thickness, 100 or 500 repeating ALD cycles were applied. The samples were exposed to ultra-short laser pulses of 130 fs duration generated by a CPA (chirped pulse amplifier) Ti:Sapphire laser system. The artificial scaffolds were irradiated by varying the laser fluence (0.2 J/cm2, 0.41 J/cm2 and 2.07 J/cm2) and the number of applied laser pulses (N = 1, 2, 5 and 10). The morphology and chemical properties of the treated samples were evaluated by Scanning Electronic Microscopy, Energy-Dispersive X-ray Spectroscopy and X-ray photoelectron spectroscopy. By combining fs laser modification with low temperature ALD method, essentially improved bioactivity properties of hybrid organic–inorganic bone tissue scaffolds could be achieved, which is of great importance for future tissue engineering application of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alaribe, F.N., Manoto, S.L., Motaung, ShCKM: Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. Biologia 71, 353–366 (2016)

    Article  Google Scholar 

  • Arca, H., Şenel, S.: Chitosan based systems for tissue engineering part 1: hard tissues. FABAD J. Pharm. Sci. 33, 35–49 (2008)

    Google Scholar 

  • Cuevas, A., Martínez de Yuso, M., Vega, V., González, A., Prida, V., Benavente, J.: Influence of ALD coating layers on the opticalproperties of nanoporous alumina-based structures. Coat 9, 43 (2019)

    Article  Google Scholar 

  • Cui, J.B.: Zinc oxide nanowires. Mater. Charact. 64, 43–52 (2012)

    Article  Google Scholar 

  • Dahlan, K., Dewi, S., Nurlaila, A., Soejoko, D.: Synthesis and characterization of calcium phosphate/chitosan composites. Int. J. Bas. Appl. Sci. 12, 50–57 (2012)

    Google Scholar 

  • Daskalova, A., Bliznakova, I., Angelova, L., Trifonov, A., Declercq, H., Buchvarov, I.: Femtosecond laser fabrication of engineered functional surfaces based on biodegradable polymer and biopolymer/ceramic composite thin films. Polymers 11(2), 378 (2019)

    Article  Google Scholar 

  • Derakhshanfar, S., Mbeleck, R., Xu, K., Zhang, X., Zhong, W., Malcolm Xing, M.: 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact. Mat. 3, 144–156 (2018)

    Google Scholar 

  • Dumontel, B., Canta, M., Engelke, H., Chiodoni, A., Racca, L., Ancona, A., Limongi, T., Canavese, G., Cauda, V.: Enhanced biostability and cellular uptake of zinc oxide nanocrystals shielded with a phospholipid bilayer. J. Mater. Chem. B 5, 8799–8813 (2017)

    Article  Google Scholar 

  • Eranna, G., Joshi, B.C., Runthala, D.P., Gupta, R.P.: Oxide materials for development of integrated gas sensors-a comprehensive review. Crit. Rev. Solid State Mater. Sci. 29, 111–188 (2004)

    Article  ADS  Google Scholar 

  • Fortunato, E., Barquinha, P., Martins, R.: Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012)

    Article  Google Scholar 

  • Fu, Y.Q., Luo, J.K., Du, X.Y., Flewitt, A.J., Li, Y., Markx, G.H., Walton, A.J., Milne, W.I.: Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens. Actuators B Chem. 143, 606–619 (2010)

    Article  Google Scholar 

  • Gao, Y.K., Traeger, F., Shekhah, O., Idriss, H., Woell, C.: Probing the interaction of the amino acid alanine with the surface of ZnO (1010). J. Coll. Interface Sci. 338, 16 (2009)

    Article  ADS  Google Scholar 

  • Gervaso, F., Scalera, F., Padmanabhan, K., Sannino, A., Antonio Licciulli, A.: High-performance hydroxyapatite scaffolds for bone tissue engineering applications. Int. J. Appl. Ceram. Technol. 9, 507–516 (2012)

    Article  Google Scholar 

  • Govindarajan, T., Shandas, R.: A survey of surface modification techniques for next-generation shape memory polymer stent devices. Polymers 6, 2309–2331 (2014)

    Article  Google Scholar 

  • Janotti, A., Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)

    Article  ADS  Google Scholar 

  • Jiang, H., Liang, J., Grant, J.T., Su, W., Bunning, T.J., Cooper, T.M., Adams, W.W.: Characterization of chitosan and rare-earth-metal-ion doped chitosan films. Macromol. Chem. Phys. 198, 1561 (1997)

    Article  Google Scholar 

  • Johnson, R., Hultqvist, A., Bent, S.: A brief review of atomic layer deposition: from fundamentals to applications. Mat. Tod. 17, 236–246 (2014)

    Article  Google Scholar 

  • Kohal, R.J., Bachle, M., Att, W., Chaar, S., Altmann, B., Renz, A., et al.: Osteoblasts and bone tissue response to surface modified zirconia and titanium implant materials. Dent. Mater. 29, 763–766 (2013)

    Article  Google Scholar 

  • Kostov, K.L., Belamie, E., Alonso, B., Mineva, T.: Surface chemical states of cellulose, chitin and chitosan studied by density functional theory and high-resolution photoelectron spectroscopy. Bulg Chem Commun 50(Special Issue J), 135–146 (2018)

    Google Scholar 

  • Laurenti, M., Cauda, V.: ZnO nanostructures for tissue engineering applications. Nanomaterials 7, 374 (2017)

    Article  Google Scholar 

  • Li, J.Y., Chen, X.L., Li, H., He, M., Qiao, Z.Y.: Fabrication of zinc oxide nanorods. J. Cryst. Growth 233, 5–7 (2001)

    Article  ADS  Google Scholar 

  • Li, C., Zang, Z., Han, C., Hu, Z., Tang, X., Du, J., Leng, Y., Sun, K.: Highly compact CsPbBr 3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy 40, 195–202 (2017)

    Article  Google Scholar 

  • Laurenti, M., Stassi, S., Lorenzoni, M., Fontana, M., Canavese, G., Cauda, V., Pirri, C.F.: Evaluation of the piezoelectric properties and voltage generation of flexible zinc oxide thin films. Nanotechnology 26, 215704 (2015)

    Article  ADS  Google Scholar 

  • Ma, P.X.: Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 7, 23–33 (2001)

    Article  Google Scholar 

  • Martino, A.D., Sittinger, M., Risbud, M.V.: Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26, 5983–5990 (2005)

    Article  Google Scholar 

  • Milella, E., Cosentino, F., Licciulli, A., Massaro, C.: Preparation and characterization of titania/hydroxyapatite composite coatings obtained by sol-gel process. Biomaterials 22, 1425–1431 (2001)

    Article  Google Scholar 

  • Mukherjee, S.: Laser Surface Modification of Ti6Al4V Implants. http://sciforum.net/conference/ecm-1, 1st International Electronics Conference on Materials (2014). Published: 30 May 2014

  • Muzzarelli, R.A.A.: Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydr. Polym. 83, 1433–1445 (2011)

    Article  Google Scholar 

  • Narayan, R.J., Jin, C., Doraiswamy, A., Mihailescu, I.N., Jelinek, M., Ovsianikov, A., Chichkov, B., Chrisey, D.B.: Laser processing of advanced bioceramics. Adv. Eng. Mater. 9, 83 (2007)

    Article  Google Scholar 

  • Narayan, R., Adiga, Sh, Pellin, M., Curtiss, L., Stafslien, S., Chisholm, B., Monteiro-Riviere, N., Brigmon, R., Elam, J.: Atomic layer deposition of nanoporous biomaterials. Mat. Today (2010). https://doi.org/10.1016/S1369-7021(10)70035-3

    Article  Google Scholar 

  • Nevins, M., Camelo, M., Nevins, M.L., Schupbach, P., Kim, D.M.: Pilot clinical and histologic evaluations of a two-piece zirconia implant. Int. J. Periodontics Restorative Dent. 31, 157–163 (2011)

    Google Scholar 

  • Olson, J., Atala, A., Yoo, J.: Tissue Engineering: current Strategies and Future Directions. Chonn. Med. J. 47, 1–13 (2011)

    Article  Google Scholar 

  • Oviroh, P., Akbarzadeh, R., Pan, D., Coetzee, R., Jen, T.-C.: New development of atomic layer deposition: processes, methods and applications. Sci. Technol. Adv. Mat. 20, 465–496 (2019)

    Article  Google Scholar 

  • Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  • Pighinelli, L., Guimarães, F., Paz, L., Zanin, G., Kmiec, M.: Calcium phosphate–chitosan and its derivatives biocomposities for hard tissue regeneration short review. Int. J. Clin. Chem. Lab. Med. 2, 6–16 (2016)

    Google Scholar 

  • Tosiriwatanapong, T., Singhatanadgit, W.: Zirconia-based biomaterials for hard tissue reconstruction. Bone Tissue Regen. Ins. 9, 1–9 (2018)

    Google Scholar 

  • Saito, T., Teraoka, K., Ota, K.: Arrayed three-dimensional structures designed to induce and maintain a cell pattern by a topographical effect on cell behavior. Mater. Sci. Eng. C 49, 256–261 (2015)

    Article  Google Scholar 

  • Scheinpflug, J., Pfeiffenberger, M., Damerau, A., Schwarz, F., Textor, M., Lang, A., Schulze, F.: Journey into bone models: a review. Genes 9, 247–283 (2018)

    Article  Google Scholar 

  • Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D.P.R., Park, J., Bao, X.Y., Lo, Y.H., Wang, D.: ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003–1009 (2007)

    Article  ADS  Google Scholar 

  • Terakawa, M.: Femtosecond laser processing of biodegradable polymers. Appl. Sci. 8, 1123 (2018)

    Article  Google Scholar 

  • Wang, Z.L., Song, J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  ADS  Google Scholar 

  • Wang, W., Yeung, K.W.K.: Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2, 224–247 (2017)

    Article  Google Scholar 

  • Wang, C.X., Yin, L.W., Zhang, L.Y., Xiang, D., Gao, R.: Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)

    Article  Google Scholar 

  • Wang, H., Cao, S., Yang, B., Li, H., Wang, M., Hu, X., Sun, K., Zang, Z.: NH4Cl Modified ZnO for High-Performance CsPbIBr2 Perovskite Solar Cells via Low Temperature Process. Solar RRL (2019). https://doi.org/10.1002/solr.201900363

    Article  Google Scholar 

  • Wua, S., Liu, X., Yeung, K., Liu, Ch., Yang, X.: Biomimetic porous scaffolds for bone tissue engineering. Mat. Sci. Eng. R 80, 1–36 (2014)

    Article  ADS  Google Scholar 

  • Zang, Z.: Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films. Appl. Phys. Lett. 112, 042106 (2018)

    Article  ADS  Google Scholar 

  • Zang, Z., Zeng, X., Du, J., Wang, M., Tang, X.: Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes. Opt. Lett. 41(15), 3463 (2016)

    Article  ADS  Google Scholar 

  • Zhu, P., Weng, Z.Y., Li, X., Liu, X.M., Wu, S.L., Yeung, K.W.K., Wang, X.B., Cui, Z.D., Yang, X.J., Chu, P.K.: Biomedical applications of functionalized ZnO nanomaterials: from biosensors to bioimaging. Adv. Mater. Interfaces 3, 1500494 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Bulgarian National Science Fund (NSF) under Project no. DM18/6 -“Ultra-short laser surface modification and property analysis of synthesized ceramic scaffolds used for bone tissue engineering” (2017–2019) and Project no. DN08/5 -“Bioactivity improvement of biomimetic materials by texturing with ultrashort laser pulses” (2016–2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Angelova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Advanced Photonics Meets Machine Learning.

Guest edited by Goran Gligoric, Jelena Radovanovic and Aleksandra Maluckov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelova, L., Bliznakova, I., Daskalova, A. et al. Femtosecond laser surface engineering of biopolymer ceramic scaffolds coated with ZnO by low temperature atomic layer deposition method. Opt Quant Electron 52, 173 (2020). https://doi.org/10.1007/s11082-020-02284-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02284-x

Keywords

Navigation