Skip to main content
Log in

Improved accuracy and defect detection in contour line determination of multiple-beam Fizeau fringes using Fourier fringe analysis technique

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An accurate and a straightforward algorithm is proposed in this article for automatic fringe analysis of the multiple-beam Fizeau fringe. The algorithm bases on the combination between the Fourier transform technique and the derivative sign binary method. The Fourier transform is the one of the most common techniques used to filter out the noise from the interference fringes. The derivative sign binary method is used to detect the edges and the contour line of the interference fringes. The comparison between the Fourier transform spectra of the two-beam and the multiple-beam interference fringes have been highlighted. The effect of the peaks of the Fourier transforms spectra on the accuracy of the contour line determination was studied. The algorithm has been successfully tested on free and noisy multiple-beam Fizeau fringes interferogram. The method presented herein is also useful for overcoming the effect of discontinuities fringes at the boundaries of the interferogram and does not need thresholds and thinning process. The obtained results were discussed and compared with a well-known method to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Agour, M., El-Farahaty, K.A., Seisa, E., Omar, E., Sokkar, T.Z.N.: Single-shot digital holography for fast measuring optical properties of fibers. Appl. Opt. 54(28), 188–195 (2015)

    Article  ADS  Google Scholar 

  • Barakat, N., Hamza, A.A.: Interferometry of Fibrous Materials. Hilger, Bristol (1990)

    Google Scholar 

  • Berryman, F., Pynsent, P., Cubillo, J.: The effect of windowing in Fourier transform profilometry applied to noisy images. Opt. Lasers Eng. 41, 815–825 (2004)

    Article  Google Scholar 

  • Chau, F.S., Shang, H.M., Soh, C.C., Hung, Y.Y.: Determination of fractional fringe orders in holographic interferometry using polarization phase shifting. Opt. Laser Technol. 25(6), 371–375 (1993)

    Article  ADS  Google Scholar 

  • Chen, W., Su, X., Cao, Y., Xiang, L., Zhang, Q.: Fourier transform profilometry based on a fringe pattern with two frequency components. Optik 119, 57–62 (2008)

    Article  ADS  Google Scholar 

  • Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Dhanotia, J., Disawal, R., Bhatia, V., Prakash, S.: Improved accuracy in slope measurement and defect detection using Fourier fringe analysis. Optik 140, 921–930 (2017)

    Article  ADS  Google Scholar 

  • Dong, Z., Chen, Z.: Advanced Fourier transform analysis method for phase retrieval from a single-shot spatial carrier fringe pattern. Opt. Lasers Eng. 107, 149–160 (2018)

    Article  Google Scholar 

  • El-Morsy, M.A.: A novel algorithm based on sub-fringe integration method for direct two-dimensional unwrapping phase reconstruction from the intensity of one shot two-beam interference fringes. Appl. Phys. B 125, 216 (2019)

    Article  ADS  Google Scholar 

  • El-Morsy, M.A., Yatagai, T., Hamza, A.A., Mabrouk, M.A., Sokkar, T.Z.N.: Multiple-beam Fizeau fringe-pattern analysis using Fourier transform method for accurate measurement of fiber refractive index profile of polymer fiber. J. Appl. Polym. Sci. 85, 475–484 (2002a)

    Article  Google Scholar 

  • El-Morsy, M.A., Yatagai, T., Hamza, A.A., Mabrouk, M.A., Sokkar, T.Z.N.: Automatic refractive index profiling of fibers by phase analysis method using Fourier transform. Opt. Lasers Eng. 38(6), 509–525 (2002b)

    Article  Google Scholar 

  • El-Morsy, M.A., Harada, K., Itoh, M., Yatagai, T.: A subfringe integration method for multiple-beam Fizeau fringe analysis. Opt. Laser Technol. 35, 223–232 (2003)

    Article  ADS  Google Scholar 

  • Fernandez, S., Gdeisat, M.A., Salvi, J., Burton, D.: Automatic window size selection in windowed Fourier transform for 3D reconstruction using adapted mother wavelets. Opt. Commun. 284, 2797–2807 (2011)

    Article  ADS  Google Scholar 

  • Funnell, W.R.J.: Image processing applied to the interactive analysis of interferometric fringes. Appl. Opt. 20(18), 3245–3250 (1981)

    Article  ADS  Google Scholar 

  • Hamza, A.A., Sokkar, T.Z.N., Mabrouk, M.A., El-Morsy, M.A.: Refractive index profile of polyethylene fiber using interactive multiple-beam Fizeau Fringe analysis. J. Appl. Polym. Sci. 77, 3099–3106 (2000)

    Article  Google Scholar 

  • Hamza, A.A., Sokkar, T.Z.N., El-Morsy, M.A., Nawareg, M.A.E.: Automatic determination of refractive index profile, sectional area and shape of fibers having regular and/or irregular transverse sections. Opt. Laser Technol. 40, 1082–1090 (2008)

    Article  ADS  Google Scholar 

  • Hamza, A.A., Sokkar, T.Z.N., El-Morsy, M.A., Nawareg, M.A.E.: Automatic determination of refractive index profile of fibers having regular and/or irregular transverse sections with considering the refraction of light rays by the fiber. Opt. Commun. 282, 27–35 (2009)

    Article  ADS  Google Scholar 

  • Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE 66(1), 51–83 (1978)

    Article  ADS  Google Scholar 

  • Huang, Z.: Fringe skeleton extraction using adaptive refining. Opt. Lasers Eng. 18, 281–295 (1993)

    Article  Google Scholar 

  • Huang, L., Kemao, Q., Pan, B., Asundi, A.K.: Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Opt. Lasers Eng. 48, 141–148 (2010)

    Article  Google Scholar 

  • Ji, W., Zhang, J.: Phase error evaluation technique based on Fourier transform for refractive index detection limit of microfluidic differential refractometer. Optik 127, 7973–7977 (2016)

    Article  ADS  Google Scholar 

  • Kim, J.-A., Kim, J.W., Kang, C.-S., Jin, J., Eom, T.B.: Interferometric profile scanning system for measuring large planar mirror surface based on single-interferogram analysis using Fourier transform method. Measurement 118, 113–119 (2018)

    Article  Google Scholar 

  • Kemao, Q.: Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations. Opt. Lasers Eng. 45, 304–317 (2007a)

    Article  Google Scholar 

  • Kemao, Q.: On window size selection in the windowed Fourier ridges algorithm. Opt. Lasers Eng. 45, 1186–1192 (2007b)

    Article  Google Scholar 

  • Kujawinska, M., Wójciak, J.: High accuracy fourier transform fringe pattern analysis. Opt. Lasers Eng. 14, 325–339 (1991)

    Article  Google Scholar 

  • Laermann, K.-H.: Optical methods in experimental solid mechanics. Springer, New York, ISBN 978-3-211-83325-4 (2000)

    Book  MATH  Google Scholar 

  • Lai, G., Yatagai, T.: Generalized phase-shifting interferometry. J. Opt. Soc. Am. A 8(5), 822–827 (1991)

    Article  ADS  Google Scholar 

  • Liu, F., Wu, Y., Wu, F., Song, W.: Generalized phase shifting interferometry based on Lissajous calibration technology. Opt. Lasers Eng. 83, 106–115 (2016)

    Article  Google Scholar 

  • Malacara, D.: Optical Shop Testing. Wiley, Hoboken (2007)

    Book  Google Scholar 

  • Malacara, D., Servín, M., Malacara, Z.: Interferogram Analysis for Optical Testing, 2nd edn, Taylor & Fransic Group, Routledge (2010)

    Google Scholar 

  • Osten, W. (Ed.), Fringe 2005. The 5th International Workshop on Automatic Processing of Fringe Patterns, Springer, New York, ISBN-13 9783540260370 (2005)

  • Paez, G., Strojnik, M.: Fringe analysis and phase reconstruction from modulated intensity patterns. Opt. Lett. 22(22), 1669–1671 (1997)

    Article  ADS  Google Scholar 

  • Paez, G., Strojnik, M.: Phase-shifted interferometry without phase unwrapping: reconstruction of a decentered wave front. J. Opt. Soc. Am. A 16(3), 475–480 (1999)

    Article  ADS  Google Scholar 

  • Patil, A., Rastogi, P.: Approaches in generalized phase shifting interferometry. Opt. Lasers Eng. 43, 475–490 (2005)

    Article  MATH  Google Scholar 

  • Porras-Aguilar, R., Falaggis, K.: Absolute phase recovery in structured light illumination systems: Sinusoidal vs intensity discrete patterns. Opt. Lasers Eng. 84, 111–119 (2016)

    Article  Google Scholar 

  • Qifeng, Y.: Spin filtering processes and automatic extraction of fringe centerlines in digitial interferometric patterns. Appl. Opt. 27(18), 3782–3784 (1988)

    Article  Google Scholar 

  • Qifeng, Y., Andresen, K.: Fringe-orientation maps and fringe skeleton extraction by the two-dimensional derivative-sign binary-fringe method. Appl. Opt. 33(29), 6873–6878 (1994)

    Article  ADS  Google Scholar 

  • Quan, C., Niu, H., Tay, C.J.: An improved windowed Fourier transform for fringe demodulation. Opt. Laser Technol. 42, 126–131 (2010)

    Article  ADS  Google Scholar 

  • Ramadan, W.A., Wahba, H.H., El-Morsy, M.A.: Disintegration of multiple-beam Fizeau fringes in transmission using FFT analysis. Appl. Phys. B 125, 44 (2019)

    Article  ADS  Google Scholar 

  • Reid, G.T.: Automatic Fringe pattern analysis: a review. Opt. Lasers Eng. 7, 37–68 (1986/1987)

  • Sánchez, G., Arévalo, A.L.M.: Generalized phase-shifting interferometry by parameter estimation with the least squares method. Opt. Lasers Eng. 51, 626–632 (2013)

    Article  Google Scholar 

  • Sciammarella, C.A., Sciammarella, F.M.: Experimental Mechanics of Solids, p. 256. Wiley, Hoboken, ISBN: 978-0-470-68953-0 (2012)

    Book  MATH  Google Scholar 

  • Servin, M., Quiroga, J.A., Padilla, J.M.: Fringe Pattern Analysis for Optical Metrology Theory, Algorithms, and Applications. Wiley, Hoboken (2014)

    Google Scholar 

  • Sokkar, T.Z.N., El-Morsy, M.A., Wahba, H.H.: Automatic fringe analysis of the induced anisotropy of bent optical fibres. Opt. Commun. 281, 1915–1923 (2008)

    Article  ADS  Google Scholar 

  • Sokkar, T.Z.N., El-Farahaty, K.A., El-Bakarya, M.A., Omar, E.Z., Agour, M.: Characterization of axially tilted fibres utilizing a single-shot interference pattern. Opt. Lasers Eng. 91, 144–150 (2017)

    Article  Google Scholar 

  • Su, X., Chen, W.: Fourier transform profilometry: a review. Opt. Lasers Eng. 35, 263–284 (2001)

    Article  Google Scholar 

  • Takeda, M.: Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review [Invited]. Appl. Opt. 52, 20–29 (2013)

    Article  ADS  Google Scholar 

  • Takeda, M., Mutoh, K.: Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt. 22, 3977–3982 (1983)

    Article  ADS  Google Scholar 

  • Takeda, M., Ina, H., Kobayashi, S.: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982)

    Article  ADS  Google Scholar 

  • Towers, C.E., Towers, D.P., Jones, J.D.C.: Absolute fringe order calculation using optimized multi-frequency selection in full-field profilometry. Opt. Lasers Eng. 43, 788–800 (2005)

    Article  Google Scholar 

  • William, K.P.: Digital Image Processing, 4th edn, p. 478. Wiley, Hoboken (2007)

    Google Scholar 

  • William, W., Macy, J.: Two-dimensional fringe-pattern analysis. Appl. Opt. 22(23), 3898–3901 (1983)

    Article  Google Scholar 

  • Yassien, K.M.: Comparative study on determining the refractive index profile of polypropylene fibres using fast Fourier transform and phase shifting interferometry. J. Opt. A: Pure Appl. Opt. 11, 075701 (2009)

    Article  ADS  Google Scholar 

  • Yassien, K.M., Agour, M., von Kopylo, C., El Dessouky, H.M.: On the digital holographic interferometry of fibrous materials, I optical properties of polymer and optical fibers. Opt. Lasers Eng. 48, 555–560 (2010)

    Article  Google Scholar 

  • Yatagai, T., Nakadate, S., Idesawa, M., Saito, H.: Automatic fringe analysis using digital image processing techniques. Opt. Eng. 21(3), 432–435 (1982)

    Article  ADS  Google Scholar 

  • Yu, X., Yao, Y., Shi, W., Sun, Y., Chen, D.: Study on an automatic processing technique of the circle interference fringe for fine interferometry. Optik 121, 826–830 (2010)

    Article  ADS  Google Scholar 

  • Zhang, S.: Absolute phase retrieval methods for digital fringe projection profilometry: a review. Opt. Lasers Eng. 107, 28–37 (2018)

    Article  Google Scholar 

  • Zhang, D., Min, M., Arola, D.D.: Fringe skeletonizing using an improved derivative sign binary method. Opt. Lasers Eng. 37, 51–62 (2002)

    Article  Google Scholar 

  • Zhang, Z., Jing, Z., Wang, Z., Kuang, D.: Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase calculation at discontinuities in fringe projection profilometry. Opt. Lasers Eng. 50, 1152–1160 (2012)

    Article  Google Scholar 

  • Zhao, R., Li, X., Sunn, P.: An improved windowed Fourier transform filter algorithm. Opt. Laser Technol. 74, 103–107 (2015)

    Article  ADS  Google Scholar 

  • Zuccarello, B.: Complete isochromatic fringe-order analysis in digital photoelasticity by fourier transform and load stepping. Strain 41, 49–58 (2005)

    Article  Google Scholar 

  • Zuo, C., Feng, S., Huang, L., Tao, T., Yin, W., Chen, Q.: Phase shifting algorithms for fringe projection profilometry: a review. Opt. Lasers Eng. 109, 23–59 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research, Prince Sattam Bin Abdulaziz University, Saudi Arabia, under Grant No. 9708/01/2019. I would like to extend my thanks and gratitude to Prof. A.A. Hamza, and Prof. T.Z.N. Sokkar for their encouragement and constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. El-Morsy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Morsy, M.A. Improved accuracy and defect detection in contour line determination of multiple-beam Fizeau fringes using Fourier fringe analysis technique. Opt Quant Electron 52, 146 (2020). https://doi.org/10.1007/s11082-020-02272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02272-1

Keywords

Navigation