Skip to main content
Log in

Properties of omnidirectional gap and defect mode of one-dimensional graphene-dielectric periodic structures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We theoretically investigate the optical response of one-dimensional graphene based photonic crystal (1D-GPC) structures with and without defect layer in the low terahertz (THz) frequency region. The 1D-GPC is composed of alternated layers of isotropic dielectric material (SiO2) and graphene monolayer sheets. Using the transfer matrix method (TMM), the effects of several parameters such as the incidence angle, width, thickness, and refractive index of the defect layer and the chemical potential of graphene sheets on the device response will be explored in detail for both TE and TM polarizations. Our simulation results indicate that when a defect layer is introduced, the structure may support two kinds of defect modes. One kind is created in the Bragg gap and the other one is created in the graphene-induced photonic band gap (GIPBG). Our results reveal that a defect mode can appear within the GIPBG only for an optical thickness of the defect layer greater than that of the alternated dielectric layers of the 1D-GPC. While, the defect modes in the Bragg gap may be created by simply breaking of the periodicity of the dielectric lattice. In addition, the resonance frequency of defect mode in the GIPBG is found to be almost insensitive to the incident angle for both polarizations. Moreover, we show that an effective Brewster angle for our structure can be deduced from the variation of the amplitude of defect mode with the incident angle. Our analysis has shown an innovative idea for the realization of tunable broadband reflectors and narrowband filtering devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-sheqefi, F.U.Y., Belhadj, W.: Photonic band gap characteristics of one-dimensional graphene-dielectric periodic structures. Superlattices Microstruct. 88, 127–138 (2015)

    ADS  Google Scholar 

  • Aly, A.H., Mohamed, D., Elsayed, H.A., Vigneswaran, D.: Optical properties of new type of superconductor-semiconductor metamaterial photonic crystals. J. Supercond. Novel Magn. 31(11), 3453–3457 (2018)

    Google Scholar 

  • Berman, O.L., Kezerashvili, R.Y.: Manipulation of Bragg and graphene photonic band gaps in one-dimensional photonic crystal containing graphene. J. Phys. Condens. Matter 24, 015305 (2012)

    ADS  Google Scholar 

  • Bludov, Y.V., Peres, N.M.R., Vasilevskiy, M.I.: Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. J. Opt. 15, 114004 (2013)

    ADS  Google Scholar 

  • Chang, T.W., Chien, J.R.C., Wu, C.J.: Magnetic-field tunable multichannel filter in a plasma photonic crystal at microwave frequencies. Appl. Opt. 55(4), 943–946 (2016)

    ADS  Google Scholar 

  • El-Naggar, S.A.: Tunability of absorption with temperature in the terahertz regime based on photonic crystals containing graphene and defect InSb layers. Opt. Quantum Electron. 47, 1627–1636 (2015)

    Google Scholar 

  • Entezar, S.R., Saleki, Z., Madani, A.: Optical properties of a defective one-dimensional photonic crystal containing graphene nanaolayers. Phys. B Phys. Condens. Matter 478, 122–126 (2015)

    ADS  Google Scholar 

  • Fan, Y., Wei, Z., Li, H., Chen, H., Soukoulis, C.M.: Photonic band gap of a graphene-embedded quarter-wave stack. Phys. Rev. B 88, 241403 (2013)

    ADS  Google Scholar 

  • Ghasemi, F., Razi, S., Madanipour, Kh: Single-step laser-assisted graphene oxide reduction and nonlinear optical properties exploration via CW laser excitation. J. Electron. Mater. 47(5), 2871–2879 (2018)

    Google Scholar 

  • Ghasemi, F., Entezar, S.R., Razi, S.: Graphene based photonic crystal optical filter: Design and exploration of the tenability. Phys. Lett. A 383, 2551–2560 (2019a)

    ADS  Google Scholar 

  • Ghasemi, F., Roshan Entezar, S., Razi, S.: Terahertz tunable photonic crystal optical filter containing graphene and nonlinear electro-optic polymer. Laser Phys. 29, 056201 (2019b)

    ADS  Google Scholar 

  • Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19, 026222 (2007)

    ADS  Google Scholar 

  • Ha, Y.K., Yang, Y.C., Kim, J.E., Park, H.Y.: Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals. Appl. Phys. Lett. 79, 15–17 (2001)

    ADS  Google Scholar 

  • Hajian, H., Soltani-Vala, A., Kalafi, M.: Characteristics of band structure and surface plasmons supported by a one-dimensional graphene-dielectric photonic crystal. Opt. Commun. 292, 149–157 (2013)

    ADS  Google Scholar 

  • Hanson, G.W.: Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J. Appl. Phys. 104, 084314 (2008a). https://doi.org/10.1063/1.3005881

    Article  ADS  Google Scholar 

  • Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008b)

    ADS  Google Scholar 

  • Hung, H., Wu, C., Chang, S.: Terahertz temperature-dependent defect mode in a semiconductor-dielectric photonic crystal. J. Appl. Phys. 110, 093110 (2011)

    ADS  Google Scholar 

  • Inoue, K., Ohtaka, K.: Photonic Crystals: Physics, Fabrication, and Applications. Springer, Berlin (2004)

    Google Scholar 

  • Joannopoulos, J.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  • Kaipa, C.S.R., Yakovlev, A.B., Hanson, G.W., Padooru, Y.R., Medina, F., Mesa, F.: Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies. Phys. Rev. B 85, 245407 (2012)

    ADS  Google Scholar 

  • Kong, X.K., Shi, X.Z., Mo, J.J., Fang, Y.T., Chen, X.L., Liu, S.B.: Tunable multichannel absorber composed of graphene and doped periodic structures. Opt. Commun. 383, 391–396 (2017)

    ADS  Google Scholar 

  • Liu, B., Johnson, S.G., Joannopoulos, J.D., Lu, L.: Generalized gilat–raubenheimer method for density-of-states calculation in photonic crystals. J. Opt. 20, 044005 (2018)

    ADS  Google Scholar 

  • Loncar, M., Lee, B.G., Diehl, L., Belkin, M., Capasso, F., Giovannini, M., Faist, J., Gini, E.: Design and fabrication of photonic crystal quantum cascade lasers for optofluidics. Opt. Express 15(8), 4499–4514 (2007)

    ADS  Google Scholar 

  • Lu, Y., Zheng, Jian-jun, Lu, Y., Ming, Nai-ben: Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect. Appl. Phys. Lett. 74, 123–125 (1999)

    ADS  Google Scholar 

  • Madani, A., Entezar, S.R.: Optical properties of one-dimensional photonic crystals containing graphene sheets. Phys. B Condens. Matter 431, 1–5 (2013)

    ADS  Google Scholar 

  • Madani, A., Entezar, S.R.: Surface polaritons of one-dimensional photonic crystals containing graphene monolayers. Superlattices Microstruct. 75, 692–700 (2014)

    ADS  Google Scholar 

  • Mahmoodzadeh, H., Rezaei, B.: Tunable Bragg defect mode in one-dimensional photonic crystal containing a graphene-embedded defect layer. Appl. Opt. 57(9), 2172–2176 (2018)

    ADS  Google Scholar 

  • Mak, K.F., Sfeir, M.Y., Wu, Y., Lui, C.H., Misewich, J.A., Heinz, T.F.: Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008). https://doi.org/10.1103/PhysRevLett.101.196405

    Article  ADS  Google Scholar 

  • Pourmahmoud, V., Rezaei, B.: Manipulation of Bragg and graphene photonic band gaps in one-dimensional photonic crystal containing graphene. Optik 185, 875–880 (2019)

    ADS  Google Scholar 

  • Rahimi, H.: Analysis of photonic spectra in Thue-Morse, double-period and Rudin-Shapiro quasiregular structures made of high temperature superconductors in visible range. Opt. Mater. 57, 264–271 (2016)

    ADS  Google Scholar 

  • Razi, S., Ghasemi, F.: Broad band temperature independent photonic crystal based optical filter with response in visible wavelength range. Laser Phys. 29(4), 046204 (2019a)

    ADS  Google Scholar 

  • Razi, S., Ghasemi, F.: Tunable photonic crystal wavelength sampler with response in terahertz frequency range. Opt. Quant. Electron. 51, 104 (2019b). https://doi.org/10.1007/s11082-019-1821-0

    Article  Google Scholar 

  • Razi, S., Ghasemi, F.: One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range. Chin. Phys. B 28(12), 124205 (2019c)

    ADS  Google Scholar 

  • Reddy, M.S., Vijaya, R., Rukhlenko, I.D., Premaratne, M.: Low-threshold lasing in photonic-crystal heterostructures. Opt. Express 22(6), 6229–6238 (2014)

    ADS  Google Scholar 

  • Reithmaier, J., Sek, G., Loffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L., Kulavoskii, V., Reinecke, T., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432(7014), 197–200 (2004)

    ADS  Google Scholar 

  • Srinivasan, K., Barclay, P., Painter, O., Chen, J., Cho, A., Gmach, G.: Experimental demonstration of a high quality factor photonic crystal microcavity. Appl. Phys. Lett. 83, 1915–1917 (2003)

    ADS  Google Scholar 

  • Srivastava, S.K., Aghajamali, A.: Investigation of reflectance properties in 1D ternary annular photonic crystal containing semiconductor and high-Tc superconductor. J. Supercond. Novel Magn. 29, 1423–1431 (2016)

    Google Scholar 

  • Stauber, T., Peres, N.M.R., Geim, A.K.: Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432 (2008). https://doi.org/10.1103/PhysRevB.78.085432

    Article  ADS  Google Scholar 

  • Sukhoivanov, I.A., Guryev, I.V.: Photonic Crystals Physics And Practical Modeling. Springer, Berlin (2010)

    Google Scholar 

  • Tokushima, M., Kosaka, H., Tomita, A., Yamada, H.: Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide. Appl. Phys. Lett. 76, 952–955 (2000)

    ADS  Google Scholar 

  • Tolmachev, V.A., Melnikov, V.A., Baldycheva, A.V., Berwick, K., Perova, T.S.: Electrically tunable Fabry-Perot resonator based on microstructured Si containing liquid crystal. Progr. Electromagn. Res. 122, 293–309 (2012)

    Google Scholar 

  • Wang, B., Zhang, X., García-Vidal, F.J., Yuan, X., Teng, J.: Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. Phys. Rev. Lett. 109, 073901 (2012). https://doi.org/10.1103/PhysRevLett.109.073901

    Article  ADS  Google Scholar 

  • Yablonovitch, E., Gmitter, T.J., Meade, R.D., Rappe, A.M., Brommer, K.D., Joannopoulos, J.D.: Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 67, 3380–3383 (1991)

    ADS  Google Scholar 

  • Yeh, P., Yariv, P.A., Hong, C.: Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am. 67, 423–438 (1977)

    ADS  Google Scholar 

  • Zamani, M.: Spectral properties of all superconducting photonic crystals comprising pair of high-high, low-low or high-low temperature superconductors. Phys. C Supercond. Appl. 520, 42–46 (2016)

    Google Scholar 

  • Zhan, T., Shi, X., Dai, Y., Liu, X., Zi, J.: Transfer matrix method for optics in graphene layers. J. Phys. Condens. Matter 25(21), 215301 (2013)

    ADS  Google Scholar 

  • Zhang, Y., Wu, Z., Cao, Y., Zhang, H.: Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal. Opt. Commun. 338, 168–173 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Belhadj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Optical Wave and Waveguide Theory and Numerical Modelling.

Guest edited by Alejandro Ortega Moñux, Rafael Godoy Rubio and Jiri Ctyroky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhadj, W. Properties of omnidirectional gap and defect mode of one-dimensional graphene-dielectric periodic structures. Opt Quant Electron 52, 162 (2020). https://doi.org/10.1007/s11082-020-02267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02267-y

Keywords

Navigation