Skip to main content
Log in

Numerical modeling of opto-electric characterization of GaAs/GaSb nanowire solar cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Numerical simulation of opto-electric characterization of GaAs/GaSb core–shell nanowire solar cells is presented, using a finite difference time-domain modeling method. The results show that the absorption, external quantum efficiency and the reflection of the NW solar cell strongly depends on the diameter. The effect of the diameters on the current density–voltage (J–V) of the NW solar cell was calculated. Furthermore, the influence of the shell thicknesses on the opto-electric characterization of GaAs/GaSb core–shell nanowire solar cells was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali, L.M., Abed, F.A.: Investigation the absorption efficiency of GaAs/InGaAs nanowire solar cells. Opt. Mater. 72, 650–653 (2017)

    Article  ADS  Google Scholar 

  • Anttu, N., Abrand, A., Asoli, D., Heurlin, M., Aberg, I., Samuelson, L., Borgström, M.: Absorption of light in InP nanowire arrays. Nano Res. 7, 816–823 (2014)

    Article  Google Scholar 

  • Armin, A., Velusamy, M., Wolfer, P., Zhang, Y., Burn, P.L., Meredith, P., Pivrikas, A.: Quantum efficiency of organic solar cells: electro-optical cavity considerations. ACS Photon. 13, 173–181 (2014)

    Article  Google Scholar 

  • Benyettou, F., Aissat, A., Benamar, M.A., Vilcot, J.P.: Modeling and simulation of GaSb/GaAs quantum dot for solar cell. Sci. Direct Energy Proc. 74, 139–147 (2015)

    Article  Google Scholar 

  • Brongersma, M.L., Cui, Y., Shanhui, F.: Light management for photovoltaics using high-index nanostructures. Nat. Mater. 13, 451–460 (2014)

    Article  ADS  Google Scholar 

  • Cansizoglu, H., Cansizoglu, M.F., Watanabe, F., Karabacak, T.: Enhanced photocurrent and dynamic response in vertically aligned In2S3/Ag Core/Shell nanorod array photoconductive devices. ACS Appl. Mater. Interface 6, 8673–8682 (2014)

    Article  Google Scholar 

  • Convertino, A., Cuscuna, M., Rubini, S., Martelli, F.: Optical reflectivity of GaAs nanowire arrays: experiment and model. J. Appl. Phys. 111, 14302 (2012)

    Article  Google Scholar 

  • Dagytė, V., Anttu, N.: Modal analysis of resonant and non-resonant optical response in semiconductor nanowire arrays. Nanotechnology 30, 025710 (2019)

    Article  ADS  Google Scholar 

  • Dimroth, F.: High-efficiency solar cells from III–V compound semiconductors. Phys. Stat. Sol. 3, 373–379 (2006)

    Google Scholar 

  • Ee, H.-S., Song, K.-D., Kim, S.-K., Park, H.-G.: Finite-difference time-domain algorithm for quantifying light absorption in silicon nanowires. Isr. J. Chem. 52, 1027–1036 (2012)

    Article  Google Scholar 

  • Ferrara, M.A., Striano, V., Coppola, G.: Volume holographic optical elements as solar concentrators: an overview. Appl. Sci. 9, 193 (2019)

    Article  Google Scholar 

  • Frederiksen, R., Tutuncuoglu, G., Matteini, F., Martinez, K.L., Morral, A.F.I., Alarcon-Llado, E.: Visual understanding of light absorption and waveguiding in standing nanowires with 3D fluorescence confocal microscopy. ACS Photon. 4, 2235–2241 (2017)

    Article  Google Scholar 

  • Fu, Y., Lam, A., Sato, I., Okabe, T., Sato, Y.: Separating reflective and fluorescent components using high frequency illumination in the spectral domain. In: IEEE International Conference on Computer Vision, ICCV (2013). pp. 457–464

  • Ganjipour, B., Sepehri, S., Dey, A.W., Tizno, O., Borg, B.M., Dick, K.A., Samuelson, L., Wernersson, L.-E., Thelande, C.: Electrical properties of GaSb/InAsSb core/shell nanowires. Nanotechnology 25, 425201 (2014)

    Article  Google Scholar 

  • Ge, Z., Xu, L., Cao, Y., Wu, T., Song, H., Ma, Z., Xu, J., Chen, K.: Substantial improvement of short wavelength response in n-SiNW/PEDOT: PSS solar cell. Nanoscale Res. Lett. 10, 2–8 (2015)

    Article  ADS  Google Scholar 

  • Ghosh, S.P., Das, K.C., Tripathy, N., Moharana, A., Adhikari, A., Bose, G., Kim, D.H., Lee, T.I., Myoung, J.M., Kar, J.P.: Synthesis of copper doped Zinc oxide nanowires with enhanced ultraviolet photoresponse behavior. Mater. Sci. Eng. 178, 012021 (2017)

    Google Scholar 

  • Hao, L., Xiaoyan, Y., Lixing, Y., Heqing, W., Peng, H., Weijun, Zh, Zhen, W., Xiaoming, X.: Improving detection efficiency of superconducting nanowire single-photon detector using multilayer antireflection coating. AIP Adv. 8, 115022 (2018)

    Article  Google Scholar 

  • Huang, N., Lin, C., Povinelli, M.L.: Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon. J. Appl. Phys. 112, 064321 (2012)

    Article  ADS  Google Scholar 

  • Husaina, A.A.F., Hasana, W.Z.W., Shafiea, S., Hamidon, M.N., Pandey, S.S.: A review of transparent solar photovoltaic technologies. Renew. Sustain. Energy Rev. 94, 779–791 (2018)

    Article  Google Scholar 

  • Jian, L., Ting, Z., Peng, Z., Yingchun, Z., Shibin, L.: Review application of nanostructured black silicon. Nanoscale Res. Lett. 13, 110 (2018)

    Article  Google Scholar 

  • Jiang, X., Xiong, Q., Nam, S., Qian, F., Li, Y., Lieber, M.: InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7, 3214–3218 (2007)

    Article  ADS  Google Scholar 

  • Jinnan, Zh, Lingmei, A., Xin, Y., Yao, W., Wei, W., Mingqian, Zh, Xia, Zh: Photovoltaic performance of pin junction nanocone array solar cells with enhanced effective optical absorption. Nanoscale Res. Lett. 13, 306 (2018)

    Article  Google Scholar 

  • Joyce, H., Docherty, C., Gao, Q., Tan, H., Jagadish, C., Lloyd-Hughes, J., Herz, M., Johnston, M.: Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy. Nanotechnology 24, 214006 (2013)

    Article  ADS  Google Scholar 

  • Jun-Sik, Y., Kihyun, K., Chang-Ki, B.: Core-shell homojunction silicon vertical nanowire tunneling field-effect transistors. Sci. Rep. 7, 41142 (2017)

    Article  ADS  Google Scholar 

  • Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.Q., Dante, M., Heeger, A.J.: Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)

    Article  ADS  Google Scholar 

  • Kuan, C.A.W., Yuning, H.: Design and optimization of ARC less InGaP/GaAs single-/multi-junction solar cells with tunnel junction and back surface field layers. Superlattices Microstruct 119, 25–39 (2018)

    Article  Google Scholar 

  • Kupec, J., Stoop, R.L., Witzigmann, B.: Light absorption and emission in nanowire array solar cells. Opt. Exp. 18, 27589–27605 (2010)

    Article  ADS  Google Scholar 

  • LaPierre, R.R.: Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells. J. Appl. Phys. 109, 034311 (2011)

    Article  ADS  Google Scholar 

  • Levinshtein, M., Rumyantsev, S., Shur, M.: Handbook series on semiconductor parameters: ternary and quaternary III-V compounds. World Scientific, Singapore (1999)

    Google Scholar 

  • Li, H.J., Ren, Y.Z., Hu, J.G., Qin, M., Wang, L.L.: Wavelength-selective wide-angle light absorption enhancement in monolayers of transition-metal dichalcogenides. J. Lightwave Technol. 36, 3236–3241 (2018)

    Article  ADS  Google Scholar 

  • Lin, Z., Zhao, P., Ye, P., Chen, Y., Gan, H., She, J., Deng, S., Xu, N., Chen, J.: Maximum field emission current density of CuO nanowires: theoretical study using a defect related semiconductor field emission model and in situ measurements. Sci. Rep. 8, 2131 (2018)

    Article  ADS  Google Scholar 

  • Linyou, C., Pengyu, F., Alok, V.P., Justin, W.S., Zongfu, Y., Wenshan, C., Jon, S.A., Shanhui, F., Mark, B.L.: Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10, 439–445 (2010)

    Article  Google Scholar 

  • Liu, X., Liu, Ch., Sun, R., Liu, K., Zhang, Y., Wang, H.-Q., Fang, J., Yang, C., Yang, C.: Improved device performance of polymer solar cells by using a thin light-harvesting-complex modified Zno film as the cathode interlayer. ACS Appl. Mater. Interface 7, 18904–18908 (2015)

    Article  Google Scholar 

  • Mikulika, D., Riccib, M., Tutuncuoglua, G., Matteinia, F., Vukajlovica, J., Vulica, N., Alarcon-Lladoa, E., Morral, A.F.I.: Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells. Nano Energy 41, 566–572 (2017)

    Article  Google Scholar 

  • Neukoma, M., Züflea, S., Jenatsch, S., Ruhstaller, B.: Opto-electronic characterization of third-generation solar cells. Sci. Technol. Adv. Mater. 19, 292 (2018)

    Google Scholar 

  • Sahoo, G.S., Mishra, G.P.: Efficient use of low-bandgap GaAs/GaSb to convert more than 50% of solar radiation into electrical energy: a numerical approach. J. Electr. Mater. 48, 560–570 (2019)

    Article  ADS  Google Scholar 

  • Sandhu, S., Yu, Z., Fan, S.: Detailed balance analysis and enhancement of open-circuit voltage in single-nanowire solar cells. Nano Lett. 14, 1011–1015 (2014)

    Article  ADS  Google Scholar 

  • Singh, J.P., Aberle, A.G., Walsh, T.M.: Electrical characterization method for bifacial photovoltaic modules. Solar Energy Mater. Solar Cell. 127, 136–142 (2014)

    Article  Google Scholar 

  • Tress, W., Leo, K., Riede, M.: Influence of hole-transport layers and donor materials on open-circuit voltage and shape of I–V curves of organic solar cells. Adv. Funct. Mater. 21, 2140–2149 (2011)

    Article  Google Scholar 

  • Wagner, J., Gruber, M., Wilke, A., Hörmann, U., Opitz, A., Nakayama, Y., Ishii, H.: Identification of different origins for s-shaped current voltage characteristics in planar heterojunction organic solar cells. J. Appl. Phys. 111, 054509 (2012)

    Article  ADS  Google Scholar 

  • Webb, J.L., Kuntsson, J., Hjort, M., Ghalamestani, S.G., Dick, K.A., Timm, R., Mikkelsen, A.: Electrical and surface properties of InAs/InSb nanowires cleaned by atomic hydrogen. Nano Lett. 15, 4865–4875 (2015)

    Article  ADS  Google Scholar 

  • Wen, L., Zhao, Z., Li, X., Shen, Y., Guo, H., Wang, Y.: Theoretical analysis and modeling of light trapping in high efficiency GaAs nanowire array solar cells. Appl. Phys. Lett. 99, 143116 (2011)

    Article  ADS  Google Scholar 

  • Xianghai, J., Xiren, Ch., Xiaoguang, Y., Xingwang, Zh, Jun, S., Tao, Y.: Self-seeded MOCVD growth and dramatically enhanced photoluminescence of InGaAs/InP core–shell nanowires. Nanoscale Res. Lett. 13, 269 (2018)

    Article  Google Scholar 

  • Yang, Y., Peng, X., Hyatt, S., Yu, D.: broadband quantum efficiency enhancement in high index nanowire resonators. Nano Lett. 15, 3541–3546 (2015)

    Article  ADS  Google Scholar 

  • Yu, W.: Electromagnetic simulation techniques based on the FDTD method. Wiley, Hoboken (2009)

    Google Scholar 

  • Zhang, C., Yang, Z., Shang, A., Wu, S., Zhan, Y., Li, X.: Improved optical absorption of silicon single-nanowire solar cells by off-axial core/shell design. Nano Energy 17, 233–240 (2015)

    Article  Google Scholar 

  • Zhang, T., Liu, B., Ahmad, W., Xuan, Y., Ying, X., Liu, Z., Chen, Z., Li, S.: Optical and electronic properties of femtosecond laser-induced sulfur-hyperdoped silicon N+/P photodiodes. Nanoscale Res. Lett. 12, 522 (2017)

    Article  ADS  Google Scholar 

  • Zhang, Y., Gao, Q., Yu, Y., Liu, Z.: Comparison of double-side and equivalent single-side illumination methods for measuring the I-V characteristics of bifacial photovoltaic devices. IEEE J. Photovolt. 8, 397–403 (2018)

    Article  Google Scholar 

  • Zheng, T., Wolfgang, T., Olle, I.: Light trapping in thin film organic solar cells. Materialstoday 17, 389–396 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latef M. Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Fundamentals of Laser Assisted Micro- and Nanotechnologies.

Guest edited by Tigran Vartanyan, Vadim Veiko, Andrey Belikov and Eugene Avrutin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, L.M., Abed, F.A. Numerical modeling of opto-electric characterization of GaAs/GaSb nanowire solar cells. Opt Quant Electron 52, 154 (2020). https://doi.org/10.1007/s11082-019-2187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2187-z

Keywords

Navigation