Skip to main content
Log in

3D control stretched length of lambda-phage WLC DNA molecule by nonlinear optical tweezers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the general Langevin equations of motion for the polystyrene bead linked to the lambda-phage worm-like chain DNA molecule embedded in the fluid under the nonlinear optical tweezers is derived in 3D space. Using the finite difference method, the dynamical properties of the bead trapped by the nonlinear optical tweezers using a thin layer of Acid Blue 29 are numerically studied. Results in, the stretched length of the lambda-phage worm-like chain DNA molecule can be controlled in 3D space by finely tuning of the laser power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)

    Article  ADS  Google Scholar 

  • Bauman, C.G., et al.: Stretching of single collapsed DNA molecule. Biophys. J. 78, 1965–1978 (2000)

    Article  ADS  Google Scholar 

  • Dufresne, R., Grier, D.G.: Optical tweezer arrays and optical substrates created with diffractive optics”. Rev. Sci. Instrum. 69, 1974–1977 (1998)

    Article  ADS  Google Scholar 

  • European Network of Excellence for Biophotonics: Acousto-Optical Deflectors for Optical Tweezer Arrays. Networking for Better Health Care. http://www.photonics4life.eu/lavout/set/consortium/P4L-DB/all-items/ (2014)

  • Fu, W.B., Wang, X.L., Zhang, X.H., Ran, S.Y., Yan, J., ad Li, M.: Compaction dynamics of single DNA molecules under tension. J. Am. Chem. Soc. 128, 15040–15041 (2006)

    Article  Google Scholar 

  • Gross, P., Laurens, N., Oddershede, L.B., Bockelmann, U., Peterman, E.J.G., Wuite, G.J.L.: Quantifying how DNA stretches, melts and changes twist under tension. Nat. Phys. 11, 731–736 (2011)

    Article  Google Scholar 

  • Hao, Y., Canavan, C., Susan, S.T., Rodrigo, A.M.: Integrated method to attach DNA handles and functional select proteins to study folding and protein-ligand interaction with optical tweezers. Sci. Rep. 7, 1–8 (2017)

    Article  Google Scholar 

  • Ho, Q.Q., Mai, V.L., Hoang, D.H., Zhuang, D.: The simulation of the stabilizing process of dielectric nanoparticle in optical trap using counter-propagating pulsed laser beams. Chin. Opt. Lett. 8(3), 332–334 (2010)

    Article  ADS  Google Scholar 

  • Ho, Q.Q., Thai, D.T., Doan, Q.T., Nguyen, M.T.: Nonlinear optical tweezers for longitudinal control of dielectric particles. Opt. Commun. 421, 94–98 (2018)

    Article  Google Scholar 

  • Huisstede, H.G.: Scanning Probe Optical Tweezers: A New Tool to Study DNA-Protein Interaction. Febodruk B.V., Enschede (2006)

    Google Scholar 

  • Kalantarifard, F., Elahi, P., Makey, G., Maragò, M.O., Ilday, F.O., Volpe, G.: Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser. Nat. Commun. 10, 2683 (2019)

    Article  ADS  Google Scholar 

  • MacDonald, M.P., Paterson, L., Sibbett, W., Dholakia, K., Bryant, P.E.: Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap. Opt. Lett. 26, 863–865 (2002)

    Article  ADS  Google Scholar 

  • Mangeol, P., Cote, D., Bizebard, T., Legrand, O., Bockelmann, U.: Probing DNA and RNA single molecules with a double optical tweezer. Eur. Phys. E 19, 311–317 (2006)

    Article  Google Scholar 

  • Neuman, C., Block, S.M.: Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004)

    Article  ADS  Google Scholar 

  • Nguyen, L.T., et al.: The numerical methods for analyzing the Z-scan data. J. Nonlinear Opt. Phys. Mat. 23, 1450020 (2014)

    Article  ADS  Google Scholar 

  • Saleh, E.A., Teich, M.C.: Fundamentals of Photonics. Wiley, Hoboken (1991)

    Book  Google Scholar 

  • Shabestari, M.H., Meijering, A.E.C., Roos, W.H., Wuite, G.J.L., Peterman, E.J.G.: Recent advance in biological single-molecule applications of optical tweezers and fluorescence microscopy. Method Enzymol. 582, 85–115 (2017)

    Article  Google Scholar 

  • Tanaka, Y., Kawada, H., Tsutsui, S., Ishikawa, M., Kitajima, H.: Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques. Opt. Express 17, 24102–24111 (2009)

    Article  ADS  Google Scholar 

  • Thai, D.T., Chu, V.L., Ho, Q.Q.: Recorrection stretch function of the spring-like elastic DNA molecules. Int. J. Eng. Innov. Technol. (IJEIT) 3(9), 1–4 (2014)

    Google Scholar 

  • Thai, D.T., Doan, Q.K., Bui, X.K., Ho, Q.Q.: 3D controlling the bead linked to DNA molecule in a single-beam nonlinear optical tweezers. Opt. Quant. Electron. 48, 561 (2016)

    Article  Google Scholar 

  • Thai, D.T., Doan, Q.K., Ho, Q.Q.: Acousto-optical tweezers for stretch of DNA molecule. Opt. Quant. Electron. 50, 51 (2018)

    Article  Google Scholar 

  • Trung, T.D., Kien, B.X., Tung, N.T., Quy, H.Q.: Dynamics of polystyrene beads linked to DNA molecules under single optical tweezers: a numerical study using full normalized Langevin equation. J. Nonlinear Opt. Phys. Mater. 25(4), 1650054 (2016)

    Article  ADS  Google Scholar 

  • Volpe, G., Volpe, G.: Simulation of Brownian particle in an optical trap. Am. J. Phys. 81, 224–230 (2013)

    Article  ADS  Google Scholar 

  • Wang, R.C., Shen, Y., Li, S., Liu, S.: Optical tweezer array system based on 2D photonic crystals. Phys. Proc. 22, 493–497 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.03-2018.342.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thang Nguyen Manh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manh, T.N., Quang, Q.H., Doan, T.T. et al. 3D control stretched length of lambda-phage WLC DNA molecule by nonlinear optical tweezers. Opt Quant Electron 52, 51 (2020). https://doi.org/10.1007/s11082-019-2164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2164-6

Keywords

Navigation