Skip to main content
Log in

Electronic properties of arsenene nanoribbons for FET application

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we study the electronic properties of arsenene nanoribbons (AsNRs) by using first-principles density functional theory calculations. The effect of ribbon width and external transverse electric field on the band gap of AsNRs has been lucubrated. AsNRs show a giant Stark effect with external transverse electric field and the carriers mainly transport along the center of nanoribbons. The results show that the impurity and vacancy defects at the edge of AsNRs have little effect on its electronic properties. In addition, the AsNRs-based field-effect transistor shows a high on/off ratio up to 9.38 × 103. Our results gain a deep insight into the electronic properties of AsNRs, we expect these findings can be instrumental for further experimental investigation of AsNRs-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)

  • Desai, S.B., Madhvapathy, S.R., Sachid, A.B., Llinas, J.P., Wang, Q., Ahn, G.H., Pitner, G., Kim, M.J., Bokor, J., Hu, C., Wong, H.S.P., Javey, A.: MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016)

    Article  ADS  Google Scholar 

  • Dolui, K., Pemmaraju, C.D., Sanvito, S.: Electric field effects on armchair MoS2 nanoribbons. ACS Nano 6, 4823–4834 (2012)

    Article  Google Scholar 

  • Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884–2889 (2014)

    Article  ADS  Google Scholar 

  • Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C.: Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 118, 14051–14059 (2014)

    Article  Google Scholar 

  • Jiang, J.-W., Park, H.S.: Negative poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, 4727 (2014)

  • Kim, W.Y., Kim, K.S.: Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat. Nanotechnol. 3, 408–412 (2008)

    Article  Google Scholar 

  • Koenig, S. P., Doganov, R. A., Schmidt, H., Neto, A. C., Oezyilmaz, B.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014)

    Article  ADS  Google Scholar 

  • Kou, L., Li, C., Zhang, Z., Guo, W.: Electric-field- and hydrogen-passivation-induced band modulations in armchair ZnO nanoribbons. J. Phys. Chem. C 114, 1326–1330 (2010)

    Article  Google Scholar 

  • Kou, L., Frauenheim, T., Chen, C.: Phosphorene as a superior gas sensor: selective adsorption and distinct I–V response. J. Phys. Chem. C 5, 2675–2681 (2014)

    Google Scholar 

  • Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014)

    Article  ADS  Google Scholar 

  • Liu, Q., Zhang, X., Abdalla, L.B., Fazzio, A., Zunger, A.: Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett. 15, 1222–1228 (2015)

    Article  ADS  Google Scholar 

  • Manfrinato, V.R., Stein, A., Zhang, L., Nam, C.-Y., Yager, K.G., Stach, E.A., Black, C.T.: Aberration-corrected electron beam lithography at the one nanometer length scale. Nano Lett. 17, 4562–4567 (2017)

    Article  ADS  Google Scholar 

  • Ni, Z., Ye, M., Ma, J., Wang, Y., Quhe, R., Zheng, J., Dai, L., Yu, D., Shi, J., Yang, J., Watanabe, S., Lu, J.: Performance upper limit of sub-10 nm monolayer MoS2 transistors. Adv. Electron. Mater. 2, 1600191 (2016)

    Article  Google Scholar 

  • Nourbakhsh, A., Zubair, A., Sajjad, R.N., Tavakkoli, K.G.A., Chen, W., Fang, S., Ling, X., Kong, J., Dresselhaus, M.S., Kaxiras, E., Berggren, K.K., Antoniadis, D., Palacios, T.: MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 16, 7798–7806 (2016)

    Article  ADS  Google Scholar 

  • Park, C.-H., Louie, S.G.: Energy gaps and stark effect in boron nitride nanoribbons. Nano Lett. 8, 2200–2203 (2008)

    Article  ADS  Google Scholar 

  • Peng, X., Wei, Q.: Chemical scissors cut phosphorene nanostructures. Mater. Res. Express 1, 045041 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  • Qiu, C., Zhang, Z., Xiao, M., Yang, Y., Zhong, D., Peng, L.-M.: Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017)

    Article  ADS  Google Scholar 

  • Raza, H., Kan, E.C.: Armchair graphene nanoribbons: electronic structure and electric-field modulation. Phys. Rev. B 77, 245434 (2008)

  • Schwierz, F.: Graphene transistors. Nat. Nanotechnol 5, 487–496 (2010)

    Article  ADS  Google Scholar 

  • Shen, L., Zeng, M., Li, S., Sullivan, M.B., Feng, Y.P.: Electron transmission modes in electrically biased graphene nanoribbons and their effects on device performance. Phys. Rev. B 86, 115419 (2012)

  • Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method forab initioorder-Nmaterials simulation. J. Phys.-Condens. Mat. 14, 2745–2779 (2002)

    Article  ADS  Google Scholar 

  • Sols, F., Guinea, F., Neto, A.H.C.: Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007)

  • Son, Y.-W., Ihm, J., Cohen, M.L., Louie, S.G., Choi, H.J.: Electrical switching in metallic carbon nanotubes. Phys. Rev. Lett. 95, 216602 (2005)

  • Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

  • Tsai, H.-S., Wang, S.-W., Hsiao, C.-H., Chen, C.-W., Ouyang, H., Chueh, Y.-L., Kuo, H.-C., Liang, J.-H.: Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem. Mater. 28, 425–429 (2016)

    Article  Google Scholar 

  • Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., Dai, H.: Room-Temperature all-semiconducting Sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008)

  • Wang, J., Yang, G., Xue, J., Lei, J., Chen, D. Lu, H., Zhang, R., Zheng, Y.: A reusable and high sensituvity nitrogen dioxide sensor based on monolayer SnSe. IEEE Electr. Device L. 39, 599–602 (2018)

    Article  ADS  Google Scholar 

  • Wang, J., Cai, Q., Lei, J., Yang, G., Xue, J., Chen, D., Liu, B., Lu, H., Zhang, R., Zheng, Y.: Performance of monolayer blue phosphorene double-gate MOSFETs from the first principles. ACS Appl. Mater. Interfaces 11, 20956–20964 (2019a)

    Article  Google Scholar 

  • Wang, J., Guo H., Xue, J., Chen, D. Yang, G., Liu B., Lu, H., Zhang, R., Zheng, Y.: Janus Ga2SeTe: a promising candidate for highly efficient solar cells. Solar Cell 3, 1900321 (2019b)

  • Watts, M.C., Picco, L., Russell-Pavier, F.S., Cullen, P.L., Miller, T.S., Bartuś, S.P., Payton, O.D., Skipper, N.T., Tileli, V., Howard, C.A.: Production of phosphorene nanoribbons. Nature 568, 216–220 (2019)

    Article  ADS  Google Scholar 

  • Wu, Q., Shen, L., Yang, M., Cai, Y., Huang, Z., Feng, Y.P.: Electronic and transport properties of phosphorene nanoribbons. Phys. Rev. B 92, 035436 (2015)

  • Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)

  • Xie, L., Liao, M., Wang, S., Yu, H., Du, L., Tang, J., Zhao, J., Zhang, J., Chen, P., Lu, X., Wang, G., Xie, G., Yang, R., Shi, D., Zhang, G.: Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 29, 1702522 (2017)

    Article  Google Scholar 

  • Xu, K., Chen, D., Yang, F., Wang, Z., Yin, L., Wang, F., Cheng, R., Liu, K., Xiong, J., Liu, Q., He, J.: Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17, 1065–1070 (2017)

    Article  ADS  Google Scholar 

  • Yue, Q., Chang, S., Kang, J., Zhang, X., Shao, Z., Qin, S., Li, J.: Bandgap tuning in armchair MoS2 nanoribbon. J. Phys. Condens. Mat. 24, 335501 (2012)

    Google Scholar 

  • Zhang, S., Yan, Z., Li, Y., Chen, Z., Zeng, H.: Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem. Int. Edit. 54, 3112–3115 (2015)

    Article  Google Scholar 

  • Zhang, X., Nan, H., Xiao, S., Wan, X., Ni, Z., Gu, X., Ostrikov, K.: Shape-uniform, high-quality monolayered MoS2 crystals for gate-tunable photoluminescence. ACS Appl. Mater. Interfaces. 9, 42121–42130 (2017)

    Article  Google Scholar 

  • Zhang, S., Guo, S., Chen, Z., Wang, Y., Gao, H., Gómez-Herrero, J., Ares, P., Zamora, F., Zhu, Z., Zeng, H.: Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soci. Rev. 47, 982–1021 (2018)

    Article  Google Scholar 

  • Zhang, X., Nan, H., Xiao, S., Wan, X., Gu, X., Du, A., Ni, Z., Ostrikov, K.: Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy. Nat. Commun. 10, 598 (2019)

  • Zhang, Z., Guo, W.: Energy-gap modulation of BN ribbons by transverse electric fields: first-principles calculations. Phys. Rev. B 77, 075403 (2008)

  • Zheng, F., Liu, Z., Wu, J., Duan, W., Gu, B.-L.: Scaling law of the giant Stark effect in boron nitride nanoribbons and nanotubes. Phys. Rev. B 78, 085423 (2008)

Download references

Acknowledgements

Authors acknowledge the financial support from the Key Project of Jiangsu Province, China (Grant No. BE2016174), National Science Foundation of China (Grant Nos. 61634002, U1830109, and 61604080), Natural Science Foundation of Jiangsu Province (Grant No. BK20160883), and the Scientific Research Foundation of Graduate School of Nanjing University (2018-CL01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjun Xue or Dunjun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Fan, Y., Xue, J. et al. Electronic properties of arsenene nanoribbons for FET application. Opt Quant Electron 52, 39 (2020). https://doi.org/10.1007/s11082-019-2154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2154-8

Keywords

Navigation