Skip to main content

Advertisement

Log in

Sensitivity enhancement analysis due to different coating materials of Fibre Bragg Grating-based depth sensor for underwater applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Ocean depth is a critical parameter for several maritime applications, ranging from surveillance to navigation. One method commonly employed is to measure the pressure at an unknown depth, and compare it with that at the surface. Fibre-optic sensors have made significant advances in this direction, conferring exceptional sensitivity, resolution and compactness. In this work, we present a simulation of an ocean depth sensor based on a uniform Fibre Bragg Grating. We study the effect of introducing a uniform layer of coating on the sensitivity. A range of different materials, including metals and polymers, are studied and compared for their sensitivity performance and general feasibility. Our results show that a coating of Polytetrafluoroethylene (PTFE) provides the highest sensitivity, in terms of wavelength shift per unit change in depth. This sensitivity can be further augmented by introducing modulations in the grating, such as chirp or apodization. We find that apodized PTFE-coated gratings are most suitable for our application, and report a peak sensitivity of 24.54 pm/m. The choice of an optimum coating is critical not only for the sensitivity, but also for parameters such as operating lifetime, robustness and linearity. Our results are anticipated to pave the way to more sensitive, flexible and precise optical sensors for underwater depth gauges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ameen, O.F., et al.: Graphene diaphragm integrated FBG sensors for simultaneous measurement of water level and temperature. Sens. Actuators A: Phys. 252, 225–232 (2016)

    Article  Google Scholar 

  • Bai, X., Hu, M., Gang, T., Tian, Q.: An ultrasonic sensor composed of a fibre Bragg grating with an air bubble for underwater object detection. Opt. Laser Technol. 112, 467–472 (2019)

    Article  ADS  Google Scholar 

  • Duraibabu, D.B., et al.: An optical fibre depth (pressure) sensor for remote operated vehicles in underwater applications. Sensors 17, 1–12 (2017a)

    Article  Google Scholar 

  • Duraibabu, D.B., et al.: Underwater depth and temperature sensing based on fibre optic technology for marine and fresh water applications. Sensors 17, 1–12 (2017b)

    Article  Google Scholar 

  • Eom, J., et al.: Fibre optic fabry–perot pressure sensor based on lensed fibre and polymeric diaphragm. Sens. Actuator A: Phys. 225, 25–32 (2015)

    Article  Google Scholar 

  • Fasano, A., et al.: Fabrication and characterization of polycarbonate microstructured polymer optical fibres for high-temperature-resistant fibre Bragg grating strain sensors. Opt. Mater. Exp. 6, 649–659 (2016)

    Article  ADS  Google Scholar 

  • Go, S.A., et al.: Design considerations of a fibre optic pressure sensor protective housing for intramuscular pressure measurements. Ann. Biomed. Eng. 45, 739–746 (2017)

    Article  Google Scholar 

  • Guo, T., Ivanov, A., Chen, C., Albert, J.: Temperature-independent tilted fibre grating vibration sensor based on cladding-core recoupling. Opt. Lett. 33, 1004–1006 (2008)

    Article  ADS  Google Scholar 

  • Heidemann, J., Stojanovic, M., Zorzi, M.: Underwater sensor networks: applications, advances and challenges. Philos. Trans. R. Soc. A. 370, 158–175 (2012)

    Article  ADS  Google Scholar 

  • Kang, L., Kim, D., Han, J.: Estimation of dynamic structural displacements using fibre Bragg grating strain sensors. J. Sound Vib. 305, 534–542 (2007)

    Article  ADS  Google Scholar 

  • Kumari, C.R.U., Samiappan, D., Kumar, R., Sudhakar, T.: Fibre optic sensors in ocean observation: a comprehensive review. Optik 179, 351–360 (2019)

    Article  ADS  Google Scholar 

  • Li, T., et al.: A diaphragm type fibre Bragg grating vibration sensor based on transverse property of optical fibre with temperature compensation. IEEE Sens. J. 27, 1021–1029 (2017)

    Google Scholar 

  • Marra, G., et al.: Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science 361, 486–490 (2018)

    ADS  Google Scholar 

  • Mihailov, S.: Fibre Bragg grating sensors for harsh environments. Sensors 12, 1898–1918 (2012)

    Article  Google Scholar 

  • Mishra, V., Lohar, M., Amphawan, A.: Improvement in temperature sensitivity of FBG by coating of different materials. Optik 127, 825–828 (2016)

    Article  ADS  Google Scholar 

  • Palumbo, G., et al.: Fibre Bragg grating sensors for real time monitoring of early age curing and shrinkage of different metakolin-based inorganic binders. IEEE Sens. J. 19, 6173–6180 (2019)

    Article  ADS  Google Scholar 

  • Parida, O.P., Nayak, J., Asokan, S.: Design and validation of a novel high-sensitivity self-temperature compensated fibre Bragg grating accelerometer. IEEE Sens. J. 19, 6197–6204 (2019)

    Article  ADS  Google Scholar 

  • Pevec, S., Donlagic, D.: Multiparameter fibre-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive index, and temperature. IEEE Photon. J. 9, 1–14 (2017)

    Article  Google Scholar 

  • Pospori, A., et al.: Thermal and chemical treatment of polymer optical fibre Bragg grating sensors for enhanced mechanical sensitivity. Opt. Fiber Technol. 36, 68–74 (2017)

    Article  ADS  Google Scholar 

  • Qiao, X., Shao, Z., Bao, W., Rong, Q.: Fibre Bragg grating sensors for the oil industry. Sensors 17, 1–34 (2017)

    Article  Google Scholar 

  • Rosenthal, A., Razansky, D., Ntziachristos, V.: High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fibre Bragg grating. Opt. Lett. 36, 1833–1835 (2011)

    Article  ADS  Google Scholar 

  • Sengupta, D., Shankar, M.S., Reddy, P.S., Prasad, R.S., Srimannarayana, K.: Sensing of hydrostatic pressure using FBG sensor for liquid level measurement. Microw. Opt. Technol. Lett. 54, 1679–1683 (2012)

    Article  Google Scholar 

  • Sheng, H., Fu, M., Chen, T., Liu, W., Bor, S.: A lateral pressure sensor using a fibre Bragg grating. IEEE Photon. Technol. Lett. 17, 1146–1148 (2004)

    Article  ADS  Google Scholar 

  • Tsuda, H., et al.: Acoustic emission measurement using a strain-insensitive fibre Bragg grating sensor under varying load conditions. Opt. Lett. 34, 2942–2944 (2009)

    Article  ADS  Google Scholar 

  • Urban, F., Kadlec, J., Vlach, R., Kuchta, R.: Design of a pressure sensor based on optical fibre Bragg grating lateral deformation. Sensors 10, 11212–11225 (2010)

    Article  Google Scholar 

  • Vorathin, E., Hafizi, Z.M., Aizzuddin, A.M., Zaini, M.A.K., Lim, K.S.: A novel temperature-insensitive hydrostatic liquid-level sensor using chirped FBG. IEEE Sens. J. 19, 157–162 (2019a)

    Article  ADS  Google Scholar 

  • Vorathin, E., et al.: FBG water-level transducer based on PVC-cantilever and rubber diaphragm structure. IEEE Sens. J. 19, 7407–7414 (2019b)

    Article  ADS  Google Scholar 

  • Wei, Z., Song, D., Zhao, Q., Cui, H.: High pressure sensor based on fibre Bragg grating and carbon fibre laminated composite. IEEE Sens. J. 8, 1615–1619 (2008)

    Article  ADS  Google Scholar 

  • Woyessa, G., et al.: Single mode step-index polymer optical fibre for humidity insensitive high temperature fibre Bragg grating sensors. Opt. Exp. 24, 1253–1260 (2016a)

    Article  ADS  Google Scholar 

  • Woyessa, G., Nielsen, K., Stefani, A., Markos, C., Bang, O.: Temperature insensitive hysteresis free highly sensitive polymer optical fibre Bragg grating humidity sensor. Opt. Exp. 24, 1206–1213 (2016b)

    Article  ADS  Google Scholar 

  • Xiao, Y., et al.: 1-kilowatt CW all-fibre laser oscillator pumped with wavelength-beam-combined diode stacks. Opt. Exp. 20, 3296–3301 (2012)

    Article  ADS  Google Scholar 

  • Yu, Y., et al.: High sensitivity all optical fibre conductivity-temperature-depth (CTD) sensing based on an optical microfibre coupler (OMC). J. Lightwave Technol. 37, 2739–2747 (2018)

    Article  ADS  Google Scholar 

  • Zhang, B., Kahrizi, M.: High-temperature resistance fibre Bragg grating temperature sensor fabrication. IEEE Sens. J. 7, 586–591 (2007)

    Article  ADS  Google Scholar 

  • Zhang, W., Webb, D., Peng, G.: Polymer optical fibre Bragg grating acting as an intrinsic biochemical concentration sensor. Opt. Lett. 37, 1370–1372 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Naval Research Board, Defense Research and Development Organization, India (Grant Number: NRB-405/OEP/17-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanalakshmi Samiappan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravartula, V., Samiappan, D. & Kumar, R. Sensitivity enhancement analysis due to different coating materials of Fibre Bragg Grating-based depth sensor for underwater applications. Opt Quant Electron 52, 27 (2020). https://doi.org/10.1007/s11082-019-2144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2144-x

Keywords

Navigation