Skip to main content
Log in

Optimization of the response spectra of organic photodetectors based on P3HT:PC61BM using PCPDTBT as the third component

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, we report a new method for extending the response spectra of organic photodetectors (OPDs) by incorporating PCPDTBT in the P3HT:PC61BM. The effects of PCPDTBT incorporation on the optical and electrical properties of OPDs were investigated, It was found that when the mass ratio of P3HT:PCPDTBT:PC61BM was 8:2:10, the response spectrum of the active layer was extended to 840 nm. The responsivity (R) and external quantum efficiency of the OPDs reached 229, 278, 249 mA/W and 48%, 65%, 68% under 630, 530, and 460 nm illumination and − 1 V bias, respectively, and the detectivity (D*) reached 1012 Jones. The results show that highly ordered polymer PCPDTBT with appropriate mass ratio can increases the exciton generation in P3HT:PC61BM, which increases the photocurrent of the device. In addition, the addition of PCPDTBT promotes the crystallization of the film, reduces the density of trap defects in the film, and reduces the dark current of the device.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • An, Q., Zhang, F., Gao, W., et al.: High-efficiency and air stable fullerene-free ternary organic solar cells. Nano Energy 45, 177–183 (2017)

    Article  Google Scholar 

  • An, Q.S., Ma, X.L., Gao, J.H., Zhang, F.J.: Solvent additive-free ternary polymer solar cells with 16.27% efficiency. Sci. Bull. 64, 504–506 (2019a)

    Article  Google Scholar 

  • An, T., Wang, Y.Q., et al.: High detectivity organic photodetectors in the visible light wavelength with ternary bulk heterojunction. Microelectron. Eng. 218, 111147 (2019b)

    Article  Google Scholar 

  • Arranz-Andrés, J., Blau, W.J.: Enhanced device performance using different carbon nanotube types in polymer photovoltaic device. Carbon 46, 2067–2075 (2008)

    Article  Google Scholar 

  • Bhatia, R., Kumar, L.: Functionalized carbon nanotube doping of P3HT:PCBM photovoltaic devices for enhancing short circuit current and efficiency. Saudi Chem. Soc. 21, 366–376 (2017)

    Article  Google Scholar 

  • Chen, F.C., Chien, S.C., Cious, G.L.: Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response. Appl. Phys. Lett. 97, 195 (2010)

    Google Scholar 

  • Gao, Y.: Surface analytical studies of interfaces in organic semiconductor device. Mater. Sci. Eng. Rep. 68, 39–87 (2010)

    Article  Google Scholar 

  • Gao, M., et al.: Highly sensitive polymer photodetectors with a wide spectral response range. Chin. Phys. B 26, 018201 (2017)

    Article  ADS  Google Scholar 

  • Hu, Z., Wang, J., Wang, Z., et al.: Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance. Nano Energy 55, 424–432 (2019)

    Article  Google Scholar 

  • Huang, J.S., Goh, T., Li, X., et al.: Polymer bulk heterojunction solar cells employing Förster resonance energy transfer. Nat. Photonics 7, 479–485 (2013)

    Article  ADS  Google Scholar 

  • Jansen-Van Vuuren, R.D., Armin, A., Pandey, A.K., et al.: Organic photodiodes: the future of full color detection and image sensing. Adv. Mater. 28, 4766–4802 (2016)

    Article  Google Scholar 

  • Li, L., Zhang, F., Wang, W., et al.: Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37,500%. ACS Appl. Mater. Interfaces 7, 5890–5897 (2015)

    Article  Google Scholar 

  • Li, Z., Fan, B.B., He, B.T., et al.: Side-chain modification of polyethylene glycol on conjugated polymers for ternary blend all-polymer solar cells with efficiency up to 9.27%. Sci. China Chem. 61, 427–436 (2018)

    Article  Google Scholar 

  • Lu, L., Chen, W., Xu, T., et al.: High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes. Nat. Commun. 6, 7327 (2015)

    Article  ADS  Google Scholar 

  • Ma, X., Zhang, F., An, Q., Sun, Q., et al.: A liquid crystal material as the third component for ternary polymer solar cells with an efficiency of 10.83% and enhanced stability. Mater. Chem. 5, 13145–13153 (2017)

    Article  Google Scholar 

  • Ma, X., Wei, G., Yu, J., et al.: Ternary nonfullerene polymer solar cells with efficiency > 13.7% by integrating the advantages of materials and two binary cells. Energy Environ. Sci. 11, 2134–2141 (2018)

    Article  Google Scholar 

  • Miao, J.L., Zhang, F.J.: Recent progress on photomultiplication type organic photodetectors. Laser Photonics Rev. 13, 1800204 (2019)

    Google Scholar 

  • Miao, J.L., Zhang, F.J., et al.: Photomultiplication type organic photodetectors with broadband and narrowband response ability. Adv. Opt. Mater. 6, 1800001 (2018)

    Article  Google Scholar 

  • Nam, M., Cha, M., Lee, H.H., et al.: Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions. Nat. Commun. 8, 14068 (2017a)

    Article  ADS  Google Scholar 

  • Nam, M., Cha, M., Lee, H.H., et al.: Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions. Nat. Commun. 8, 14068 (2017b)

    Article  ADS  Google Scholar 

  • Nam, S., et al.: Efficient deep red light-sensing all-polymer phototransistors with p-type/n-type conjugated polymer bulk heterojunction layers. ACS Appl. Mater. Interfaces 9, 14983–14989 (2017c)

    Article  Google Scholar 

  • Nie, R., Zhao, Z., Deng, X.: Roles of electrode interface on the performance of organic photodetectors. Synth. Met. 227, 163–169 (2017a)

    Article  Google Scholar 

  • Nie, R., Zhao, Z., Deng, X.: Roles of electrode interface on the performance of organic photodetectors. Synth. Met. 227, 163–169 (2017b)

    Article  Google Scholar 

  • Nie, R., Deng, X., Feng, L., et al.: Highly sensitive and broadband organic photodetectors with fast speed gain and large linear dynamic range at low forward bias. Small 13, 1603260 (2017c)

    Article  Google Scholar 

  • Noriega, R., Rivnay, J., Vandewal, K., et al.: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1037–1043 (2013)

    Article  ADS  Google Scholar 

  • Qiang, P., Choy, W.C., Zhang, G., et al.: Highly efficient ternary-blend polymer solar cells enabled by a nonfullerene acceptor and two polymer donors with a broad composition tolerance. Adv. Mater. 29, 1704271 (2017)

    Article  Google Scholar 

  • Robb, M.J., Ku, S.Y., Brunetti, F.G., et al.: A renaissance of color: new structures and building blocks for organic electronics. Polym. Sci. Part A Polym. Chem. 51, 1263–1271 (2013)

    Article  ADS  Google Scholar 

  • Shin, H., Kim, J., Lee, C.: Ternary bulk heterojunction for wide spectral range organic photodetectors. Korean Phys. Soc. 71, 196–202 (2017a)

    Article  ADS  Google Scholar 

  • Shin, H., Kim, J., Lee, C.: Ternary bulk heterojunction for wide spectral range organic photodetectors. Korean Phys. Soc. 71, 196–202 (2017b)

    Article  ADS  Google Scholar 

  • Sivakumar, G., Pratyusha, T., Shen, W., et al.: Performance of donor–acceptor copolymer materials PCPDTBT and PCDTBT with poly hexyl thiophene polymer in a ternary blend. Mater. Today Proc. 4, 5060–5066 (2017)

    Article  Google Scholar 

  • Wang, W., Zhang, F., Du, M., et al.: Highly narrowband photomultiplication type organic photodetectors. Nano Lett. 17, 1995–2002 (2017a)

    Article  ADS  Google Scholar 

  • Wang, Y., Zhu, L., Hu, Y., et al.: High sensitivity and fast response solution processed polymer photodetectors with polyethylenimine ethoxylated (PEIE) modified ITO electrode. Opt. Express 25, 7719 (2017b)

    Article  ADS  Google Scholar 

  • Wang, W.B., Du, M.D., et al.: Organic photodetectors with gain and broadband/narrowband response under top/bottom illumination conditions. Adv. Opt. Mater. 6, 1800249 (2018)

    Article  Google Scholar 

  • Wei, G., Wang, S., Renshaw, K., et al.: Solution-processed squaraine bulk heterojunction photovoltaic cells. ACS Nano 4, 1927–1934 (2010)

    Article  Google Scholar 

  • Weng, K.K., Li, C., Bi, P.Q., et al.: Ternary organic solar cells based on two compatible PDI-based acceptors with enhanced power conversion efficiency. Mater. Chem. A 7, 3552–3557 (2019)

    Article  Google Scholar 

  • Yang, Y., Chen, W., Dou, L., et al.: High-performance multiple-donor bulk heterojunction solar cells. Nat. Photonics 9, 190–198 (2015)

    Article  ADS  Google Scholar 

  • Zafar, Q., Ahmad, Z.: Dual donor bulk-heterojunction to realize a quick and more sensitive organic visible photodector. Mater. Sci. Mater. Electron. 29, 11144–11150 (2018)

    Article  Google Scholar 

  • Zang, Y., Huang, D., Di, C.A., et al.: Device engineered organic transistors for flexible sensing applications. Adv. Mater. 28, 4549–4555 (2016)

    Article  Google Scholar 

  • Zhang, D., Liu, C., Li, K., et al.: Trapped-electron-induced hole injection in perovskite photodetector with controllable gain. Adv. Opt. Mater. 6, 1701189 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The author is particularly grateful to the Shaanxi Provincial Natural Science Foundation Research Project Fund for its support, Fund Number 2019JM-251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao An.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, T., Wang, Y. & Xue, J. Optimization of the response spectra of organic photodetectors based on P3HT:PC61BM using PCPDTBT as the third component. Opt Quant Electron 52, 7 (2020). https://doi.org/10.1007/s11082-019-2123-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2123-2

Keywords

Navigation