Skip to main content
Log in

Optical absorption enhancement in vertical InP nanowire random structures for photovoltaic applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have investigated the numerical method on optical properties of vertical InP nanowires with three types of random structures, i.e. random diameter, height, and position. It is found that light absorption in random structures is improved compared to their periodic structures. Also, enhancement of absorption in random position structure is slight while random diameter shows significant absorption enhancement, which achieves 10.4% improvement compared to the periodic structure. This is due to additional resonances, broadening of existing resonance, and lower optical reflection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abujetas, D.R., Paniagua-Domínguez, R., Sánchez-Gil, J.A.J.A.P.: Unraveling the Janus role of Mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting. ACS Photonics 2(7), 921–929 (2015)

    Article  Google Scholar 

  • Battaglia, C., Hsu, C.M., Söderström, K., Escarré, J., Haug, F.J., Charrière, M., Boccard, M., Despeisse, M., Alexander, D.T.L., Cantoni, M., Cui, Y., Ballif, C.: Light trapping in solar cells: can periodic beat random? ACS Nano 6(3), 2790–2797 (2012)

    Article  Google Scholar 

  • Branham, M.S., Hsu, W.C., Yerci, S., Loomis, J., Boriskina, S.V., Hoard, B.R., Han, S.E., Ebong, A., Chen, G.: Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics. Adv. Opt. Mater. 4(6), 858–863 (2016)

    Article  Google Scholar 

  • Buin, A., Verma, A., Svizhenko, A., Anantram, M.J.N.l.: Significant enhancement of hole mobility in [110] silicon nanowires compared to electrons and bulk silicon. Nano Lett. 8(2), 760–765 (2008)

    Article  ADS  Google Scholar 

  • Cao, L., White, J.S., Park, J.-S., Schuller, J.A., Clemens, B.M., Brongersma, M.L.J.N.M.: Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8(8), 643–647 (2009)

    Article  ADS  Google Scholar 

  • Cao, A., Shan, M., Paltrinieri, L., Evers, W.H., Chu, L., Poltorak, L., Klootwijk, J.H., Seoane, B., Gascon, J., Sudhölter, E.J.R., Smet, L.C.P.M.: Enhanced vapour sensing using silicon nanowire devices coated with Pt nanoparticle functionalized porous organic frameworks. Nanoscale 10(15), 6884–6891 (2018)

    Article  Google Scholar 

  • Chen, J., Wang, K., Hartman, L., Zhou, W.: H2S detection by vertically aligned CuO nanowire array sensors. J. Phys. Chem. C 112(41), 16017–16021 (2008)

    Article  Google Scholar 

  • Dai, X., Zhang, S., Wang, Z., Adamo, G., Liu, H., Huang, Y., Couteau, C., Soci, C.: GaAs/AlGaAs nanowire photodetector. Nano Lett. 14(5), 2688–2693 (2014)

    Article  ADS  Google Scholar 

  • Deng, C., Tan, X., Jiang, L., Tu, Y., Ye, M., Yi, Y.J.O.C.: Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications. Opt. Commun. 407, 199–203 (2018)

    Article  ADS  Google Scholar 

  • Dewan, R., Shrestha, S., Jovanov, V., Hüpkes, J., Bittkau, K., Knipp, D.: Random versus periodic: determining light trapping of randomly textured thin film solar cells by the superposition of periodic surface textures. Sol. Energy Mater. Sol. Cells 143, 183–189 (2015)

    Article  Google Scholar 

  • Du, Q.G., Kam, C.H., Demir, H.V., Yu, H.Y., Sun, X.W.: Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications. Opt. Lett. 36(10), 1884–1886 (2011)

    Article  ADS  Google Scholar 

  • Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C.M.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816), 66–69 (2001)

    Article  ADS  Google Scholar 

  • Duan, Z., Li, M., Mwenya, T., Fu, P., Li, Y., Song, D.: Effective light absorption and its enhancement factor for silicon nanowire-based solar cell. Appl. Opt. 55(1), 117–121 (2016)

    Article  ADS  Google Scholar 

  • Edward, D.P., Palik, I. J. H. O. O. C. O. S. (eds.): Handbook of Optical Constants of Solids. Academic, Orlando (1985)

  • Fonoberov, V.A., Balandin, A.A.J.N.L.: Giant enhancement of the carrier mobility in silicon nanowires with diamond coating. Nano Lett. 6(11), 2442–2446 (2006)

    Article  ADS  Google Scholar 

  • Ghahremanirad, E., Olyaee, S., Hedayati, M.: The influence of embedded plasmonic nanostructures on the optical absorption of perovskite solar cells. Photonics (2019). https://doi.org/10.3390/photonics6020037

    Article  Google Scholar 

  • Ghahremanirad, E., Olyaee, S., Nejand, B.A., Nazari, P., Ahmadi, V., Abedi, K.J.S.E.: Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Sol. Energy 169, 498–504 (2018a)

    Article  ADS  Google Scholar 

  • Ghahremanirad, E., Olyaee, S., Nejand, B.A., Ahmadi, V., Abedi, K.J.P.S.S.: Hexagonal array of mesoscopic HTM-based perovskite solar cell with embedded plasmonic nanoparticles. Phys Status Solidi (b) (2018b). https://doi.org/10.1002/pssb.201700291

    Article  ADS  Google Scholar 

  • Heiss, M., Russo-Averchi, E., Dalmau-Mallorquí, A., Tütüncüoğlu, G., Matteini, F., Rüffer, D., Conesa-Boj, S., Demichel, O., Alarcon-Lladó, E., Morral, A.F.: III–V nanowire arrays: growth and light interaction. Nanotechnology (2013). https://doi.org/10.1088/0957-4484/25/1/014015

    Article  Google Scholar 

  • Hu, L., Chen, G.: Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7(11), 3249–3252 (2007)

    Article  ADS  Google Scholar 

  • Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P.: Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001)

    Article  ADS  Google Scholar 

  • Huang, F., Pascoe, A.R., Wu, W.Q., Ku, Z., Peng, Y., Zhong, J., Caruso, R.A., Cheng, Y.B.: Effect of the microstructure of the functional layers on the efficiency of perovskite solar cells. Adv. Mater. (2017). https://doi.org/10.1002/adma.201770139

  • Jain, V., Nowzari, A., Wallentin, J., Borgström, M.T., Messing, M.E., Asoli, D., Graczyk, M., Witzigmann, B., Capasso, F., Samuelson, L., Pettersson, H.: Study of photocurrent generation in InP nanowire-based p+–in+photodetectors. Nano Research 7(4), 544–552 (2014)

    Article  Google Scholar 

  • Johnson, J.C., Yan, H., Schaller, R.D., Haber, L.H., Saykally, R.J., Yang, P.: Single nanowire lasers. J. Phys. Chem. B 105(46), 11387–11390 (2001)

    Article  Google Scholar 

  • Könenkamp, R., Word, R.C., Schlegel, C.: Vertical nanowire light-emitting diode. Appl. Phys. Lett. 85(24), 6004–6006 (2004)

    Article  ADS  Google Scholar 

  • Liao, Q.L., Jiang, H., Zhang, X.W., Qiu, Q.F., Tang, Y., Yang, X.K., Liu, Y.L., Huang, W.H.: A single nanowire sensor for intracellular glucose detection. Nanoscale 11(22), 10702–10708 (2019)

    Article  Google Scholar 

  • Lin, C., Povinelli, M.L.: Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics. Opt. Express 19(105), A1148–A1154 (2011)

    Article  ADS  Google Scholar 

  • Ma, J.W., Lee, W.J., Bae, J.M., Jeong, K.S., Oh, S.H., Kim, J.H., Kim, S.-H., Seo, J.-H., Ahn, J.-P., Kim, H., Cho, M.-H.: Carrier mobility enhancement of tensile strained Si and SiGe nanowires via surface defect engineering. Nano Lett. 15(11), 7204–7210 (2015)

    Article  ADS  Google Scholar 

  • Ma, G., Du, R., Cai, Y., Shen, C., Gao, X., Zhang, Y., Liu, F., Shi, W., Du, W., Zhang, Y.: Improved power conversion efficiency of silicon nanowire solar cells based on transition metal oxides. Sol. Energy Mater. Sol. Cells 193, 163–168 (2019)

    Article  Google Scholar 

  • Maeda, S., Tomioka, K., Hara, S., Motohisa, J.: Fabrication and characterization of InP nanowire light-emitting diodes. Jpn. J. Appl. Phys. (2012). https://doi.org/10.1143/JJAP.51.02BN03

    Article  Google Scholar 

  • Mohseni, P.K., Behnam, A., Wood, J.D., Zhao, X., Yu, K.J., Wang, N.C., Rockett, A., Rogers, J.A., Lyding, J.W., Pop, E.: Monolithic III–V nanowire solar cells on graphene via direct van der waals epitaxy. Adv. Mater. 26(22), 3755–3760 (2014)

    Article  Google Scholar 

  • Moulin, E., Steltenpool, M., Boccard, M., Garcia, L., Bugnon, G., Stuckelberger, M., Feuser, E., Niesen, B., Erven, R., Schuttauf, J.W., Haug, F.J., Ballif, C.: 22-D Periodic and random-on-periodic front textures for tandem thin-film silicon solar cells. IEEE J. Photovolt. 4(5), 1177–1184 (2014)

    Article  Google Scholar 

  • Muskens, O.L., Rivas, J.G., Algra, R.E., Bakkers, E.P., Lagendijk, A.: Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 8(9), 2638–2642 (2008)

    Article  ADS  Google Scholar 

  • Otuonye, U., Kim, H.W., Lu, W.D.: Ge nanowire photodetector with high photoconductive gain epitaxially integrated on Si substrate. Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.4982648

    Article  Google Scholar 

  • Park, J.H., Nandi, R., Sim, J.K., Um, D.Y., Kang, S., Kim, J.S., Lee, C.R.: A III-nitride nanowire solar cell fabricated using a hybrid coaxial and uniaxial InGaN/GaN multi quantum well nanostructure. RSC Adv. 8(37), 20585–20592 (2018)

    Article  Google Scholar 

  • Parkinson, P., Joyce, H.J., Gao, Q., Tan, H.H., Zhang, X., Zou, J., Jagadish, C., Herz, L.M., Johnston, M.B.: Carrier lifetime and mobility enhancement in nearly defect-free core–shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett. 9(9), 3349–3353 (2009)

    Article  ADS  Google Scholar 

  • Parsons, R., Tamang, A., Jovanov, V., Wagner, V., Knipp, D.: Comparison of light trapping in silicon nanowire and surface textured thin-film solar cells. Appl. Sci. (2017). https://doi.org/10.3390/app7040427

    Article  Google Scholar 

  • Pauzauskie, P.J., Sirbuly, D.J., Yang, P.: Semiconductor nanowire ring resonator laser. Phys. Rev. Lett. (2006). https://doi.org/10.1103/PhysRevLett.96.143903

  • Ren, D., Azizur-Rahman, K.M., Rong, Z., Juang, B.C., Somasundaram, S., Shahili, M., Farrell, A.C., Williams, B.S., Huffaker, D.L.: Room-temperature midwavelength infrared InAsSb nanowire photodetector arrays with Al2O3 passivation. Nano Lett. 19(5), 2793–2802 (2019)

    Article  ADS  Google Scholar 

  • Ruan, X., Kaviany, M.: Photon localization and electromagnetic field enhancement in laser-irradiated, random porous media. Microscale Thermophys. Eng. 9(1), 63–84 (2005a)

    Article  Google Scholar 

  • Ruan, X., Kaviany, M.: Enhanced nonradiative relaxation and photoluminescence quenching in random, doped nanocrystalline powders. J. Appl. Phys. (2005b). https://doi.org/10.1063/1.1900937

    Article  Google Scholar 

  • Ruan, X., Kaviany, M.: Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders. Phys. Rev. B (2006). https://doi.org/10.1103/PhysRevB.73.155422

    Article  Google Scholar 

  • Salem, M.S., Zekry, A., Shaker, A., Abouelatta, M., Abdolkader, T.M.J.S.S.: Performance enhancement of a proposed solar cell microstructure based on heavily doped silicon wafers. Semicond. Sci. Technol. (2019). https://doi.org/10.1088/1361-6641/ab0078

    Article  Google Scholar 

  • Street, R.A., Wong, W.S., Paulson, C.: Analytic model for diffuse reflectivity of silicon nanowire mats. Nano Lett. 9(10), 3494–3497 (2009)

    Article  ADS  Google Scholar 

  • Sun, J., Yin, Y., Han, M., Yang, Z., Lan, C., Liu, L., Wang, Y., Han, N., Shen, L., Wu, X., Ho, J.C.: Nonpolar-oriented Wurtzite InP nanowires with electron mobility approaching the theoretical limit. ACS Nano 12(10), 10410–10418 (2018)

    Article  Google Scholar 

  • Wu, Y., Yan, X., Wei, W., Zhang, J., Zhang, X., Ren, X.: Optimization of GaAs Nanowire Pin junction array solar cells by using AlGaAs/GaAs heterojunctions. Nanoscale Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2503-8

    Article  Google Scholar 

  • Xu, Z., Huangfu, H., Li, X., Qiao, H., Guo, W., Guo, J., Wang, H.: Role of nanocone and nanohemisphere arrays in improving light trapping of thin-film solar cells. Opt. Commun. 377, 104–109 (2016)

    Article  ADS  Google Scholar 

  • Yan, X., Li, B., Wu, Y., Zhang, X., Ren, X.: A single crystalline InP nanowire photodetector. Appl. Phys. Lett. (2016). https://doi.org/10.1063/1.4960713

    Article  Google Scholar 

  • Yao, M., Huang, N., Cong, S., Chi, C.Y., Seyedi, M.A., Lin, Y.T., Cao, Y., Povinelli, M.L., Dapkus, P.D., Zhou, C.: GaAs nanowire array solar cells with axial p–i–n junctions. Nano Lett. 14(6), 3293–3303 (2014)

    Article  ADS  Google Scholar 

  • Zhang, G.J., Zhang, G., Chua, J.H., Chee, R., Wong, E.H., Agarwal, A., Buddharaju, K.D., Singh, N., Gao, Z., Balasubramanian, N.: DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett. 8(4), 1066–1070 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Olyaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adibzadeh, F., Olyaee, S. Optical absorption enhancement in vertical InP nanowire random structures for photovoltaic applications. Opt Quant Electron 52, 6 (2020). https://doi.org/10.1007/s11082-019-2120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2120-5

Keywords

Navigation