Skip to main content
Log in

Propagation length enhancement in a magneto optic plasmonic Mach–Zehnder isolator using graphene

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this study, a magneto optic plasmonic Mach–Zehnder isolator is designed and simulated in an Insulator–Graphene–Insulator configuration including one layer of graphene. The proposed waveguide takes advantages of propagating graphene’s surface plasmon polaritons (SPPs) at the interface of the graphene and dielectrics. Under special circumstances, in which the imaginary part of the graphene’s conductivity is negative, it behaves as a metal. Therefore, graphene is applied as the conductor layer. In addition, due to the magneto optic effect, nonreciprocal phase shift occurs in the magneto optic branch of the Mach–Zehnder structure. Also, two Yttrium Iron Garnet layers are deployed to create magneto-optic effect. In order to simulate our proposed device, finite difference time domain and mode solutions approaches are utilized. In this regard, propagating constant is extracted through the effective index method. Our proposed device provides considerably larger propagation length in comparison with the conventional plasmonic isolators, in which noble metals such as gold have been developed for SPPs propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ansell, D., Radko, I.P., Han, Z., Rodriguez, F.J., Bozhevolnyi, S.I., Grigorenko, A.N.: Hybrid graphene plasmonic waveguide modulators. Nat. Commun. 6, 8846 (2015)

    Article  ADS  Google Scholar 

  • Asgari, S., Granpayeh, N., Kashani, Z.G.: Plasmonic mid-infrared wavelength selector and linear logic gates based on graphene cylindrical resonator. IEEE Trans. Nanotechnol. 18, 42–50 (2018)

    Article  ADS  Google Scholar 

  • Asgari, S., Shokati, E., Granpayeh, N.: High-efficiency tunable plasmonically induced transparency-like effect in metasurfaces composed of graphene nano-rings and ribbon arrays and its application. Appl. Optics 58(13), 3664–3670 (2019)

    Article  ADS  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824 (2003)

    Article  ADS  Google Scholar 

  • Chamanara, N., Sounas, D., Szkopek, T., Caloz, C.: Optically transparent and flexible graphene reciprocal and nonreciprocal microwave planar components. IEEE Microw. Wirel. Compon. Lett. 22(7), 360–362 (2012)

    Article  Google Scholar 

  • Chamanara, N., Sounas, D., Caloz, C.: Non-reciprocity with graphene magnetoplasmons and application to plasmonic isolators. In:International Symposium on Electromagnetic Theory in Proceeding of 2013, pp. 266–268 (2013a)

  • Chamanara, N., Sounas, D., Caloz, C.: Non-reciprocal magnetoplasmon graphene coupler. Optics Express 21(9), 11248–11256 (2013b)

    Article  ADS  Google Scholar 

  • Chau, K.J., Irvine, S.E., Elezzabi, A.Y.: A gigahertz surface magneto-plasmon optical modulator. IEEE J. Quantum Electron. 40(5), 571–579 (2004)

    Article  ADS  Google Scholar 

  • Correas-Serrano, D., Gomez-Diaz, J.S., Sounas, D.L., Hadad, Y., Alvarez-Melcon, A., Alù, A.: Nonreciprocal graphene devices and antennas based on spatiotemporal modulation. IEEE Antennas Wirel. Propag. Lett. 15, 1529–1532 (2015a)

    Article  ADS  Google Scholar 

  • Correas-Serrano, D., Gomez-Diaz, J.S., Alù, A., Melcón, A.A.: Electrically and magnetically biased graphene-based cylindrical waveguides: analysis and applications as reconfigurable antennas. IEEE Trans. Terahertz Sci. Technol. 5(6), 951–960 (2015b)

    Article  ADS  Google Scholar 

  • Fan, Y., Shen, N.H., Zhang, F., Zhao, Q., Wu, H., Fu, Q., Wei, Z., Li, H., Soukoulis, C.M.: Graphene plasmonics: a platform for 2D optics. Adv. Opt. Mater. 7(3), 1800537 (2019)

    Article  Google Scholar 

  • Fang, Y., Sun, M.: Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. 4(6), 294 (2015)

    Article  Google Scholar 

  • Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  • Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: Magneto-optical conductivity in Graphene. J. Phys. 19(2), 026222 (2006)

    Google Scholar 

  • Hanson, G.W.: Erratum:“Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene”. J. Appl. Phys. 113(2), 029902 (2013)

    Article  ADS  Google Scholar 

  • Heidari, M., Ahmadi, V.: Design and analysis of a graphene magneto-plasmon waveguide for plasmonic mode switch. IEEE Access 7, 43406–43413 (2019)

    Article  Google Scholar 

  • Jalas, D., Petrov, A., Eich, M., Freude, W., Fan, S., Yu, Z., Baets, R., Popović, M., Melloni, A., Joannopoulos, J.D., Vanwolleghem, M.: What is—and what is not—an optical isolator. Nat. Photonics 7(8), 579 (2013)

    Article  ADS  Google Scholar 

  • Khatir, M., Granpayeh, N.: Design and simulation of magneto-optic Mach–Zehnder isolator. Optik Int. J. Light Electron Optics 122(24), 2199–2202 (2011)

    Article  Google Scholar 

  • Khatir, M., Granpayeh, N.: An exact analysis method of SPP propagation in the anisotropic magneto-optic slab waveguides: I. Transversal configuration. Optik Int J Light Electron Optics 124(3), 276–281 (2013a)

    Article  Google Scholar 

  • Khatir, M., Granpayeh, N.: An ultra compact and high speed magneto-optic surface plasm on switch. J. Lightwave Technol. 31(7), 1045–1054 (2013b)

    Article  ADS  Google Scholar 

  • Lee, I.H., Yoo, D., Avouris, P., Low, T., Oh, S.H.: Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14(4), 313 (2019)

    Article  ADS  Google Scholar 

  • Li, Z.Q., Henriksen, E.A., Jiang, Z., Hao, Z., Martin, M.C., Kim, P.L., Stormer, H.L., Basov, D.N.: Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4(7), 532 (2008)

    Article  Google Scholar 

  • Liu, J.P., Zhai, X., Wang, L.L., Li, H.J., Xie, F., Lin, Q., Xia, S.X.: Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide. Plasmonics 11, 703–711 (2016)

    Article  Google Scholar 

  • Maier, S.A.: Plasmonics: metal nanostructures for subwavelength photonic devices. IEEE J. Sel. Top. Quantum Electron. 12(6), 1214–1220 (2006)

    Article  ADS  Google Scholar 

  • Mizumoto, T., Takei, R., Shoji, Y.: Waveguide optical isolators for integrated optics. IEEE J. Quantum Electron. 48(2), 252–260 (2011)

    Article  ADS  Google Scholar 

  • Novoselov, K.S., Fal, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490, 192–200 (2012)

    Article  ADS  Google Scholar 

  • Ooi, K.J., Cheng, J.L., Sipe, J.E., Ang, L.K., Tan, D.T.: Ultrafast, broadband, and configurable midinfrared all-optical switching in nonlinear graphene plasmonic waveguides. APL Photonics 1(4), 046101 (2016)

    Article  ADS  Google Scholar 

  • Shin, J.S., Kim, J.T.: Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide. Nanotechnology 26(36), 365201 (2015)

    Article  ADS  Google Scholar 

  • Song, B., Zhuang, L., Lowery, A.J.: Travelling-wave mach–zehnder modulator temporal integrator and a time-gate isolator. IEEE Photonics Technol. Lett. 29(13), 1101–1104 (2017)

    Article  ADS  Google Scholar 

  • Tamagnone, M., Fallahi, A., Mosig, J.R., Perruisseau-Carrier, J.: Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices. Nat. Photonics 8(7), 556 (2014)

    Article  ADS  Google Scholar 

  • Tamagnone, M., Moldovan, C., Poumirol, J.M., Kuzmenko, A.B., Ionescu, A.M., Mosig, J.R., Perruisseau-Carrier, J.: Near optimal graphene terahertz non-reciprocal isolator. Nat. Commun. 7, 11216 (2016)

    Article  ADS  Google Scholar 

  • Vakil, A., Engheta, N.: Transformation optics using graphene. Science 332(6035), 1291–1294 (2011)

    Article  ADS  Google Scholar 

  • Wolfe, R., Hegarty, J., Dillon Jr., J.F., Luther, L.C., Celler, G.K., Trimble, L.E., Dorsey, C.S.: Thin-film waveguide magneto-optic isolator. Appl. Phys. Lett. 46(9), 817–819 (1985)

    Article  ADS  Google Scholar 

  • Yamaguchi, R., Shoji, Y., Mizumoto, T.: Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input. Optics Express 26(16), 21271–21278 (2018)

    Article  ADS  Google Scholar 

  • Zhou, H., Chee, J., Song, J., Lo, G.: Analytical calculation of nonreciprocal phase shifts and comparison analysis of enhanced magneto-optical waveguides on SOI platform. Optics Express 20(8), 8256–8269 (2012)

    Article  ADS  Google Scholar 

  • Zhu, B., Ren, G., Gao, Y., Wu, B., Wang, Q., Wan, C., Jian, S.: Graphene plasmons isolator based on nonreciprocal coupling. Optics Express 23(12), 16071–16083 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Naser-Moghadasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hekmatnia, B., Naser-Moghadasi, M. & Khatir, M. Propagation length enhancement in a magneto optic plasmonic Mach–Zehnder isolator using graphene. Opt Quant Electron 52, 9 (2020). https://doi.org/10.1007/s11082-019-2115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2115-2

Keywords

Navigation