Skip to main content

Optimization of the frequency response of a novel GaAs plasmonic terahertz detector

Abstract

Previously there was reported a new type of high-speed plasmonic THz detector that can operate at room temperature. As an extension of that work, the sensitivity of the detector was investigated over a wide range of sub-THz frequencies. The measured frequency response is not purely monotonic but exhibits oscillatory behaviour with a number of maxima and minima. Our study reveals that such frequency dependence is caused by the interference of electromagnetic waves inside the detector substrate, as the frequencies of these extrema are found to be governed by the substrate thickness. We demonstrate that sensitivity of this type of detector can be optimized for the desired operating frequency within 0.06–0.7 THz spectrum by adjusting the substrate thickness. We also show that a monotonic frequency response with eliminated minima can be achieved by mounting the detector on a specially designed silicon lens.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Afsar, M.N., Button, K.J.: Precise millimeter-wave measurements of complex refractive index, complex dielectric permittivity and loss tangent of GaAs, Si, SiO2, A12O3, BeO, macor, and glass. IEEE Trans. Microw. Theor. Tech. 31(2), 217–223 (1983)

    ADS  Article  Google Scholar 

  • Andreev, I.V., Muravev, V.M., Khisameeva, A.R., Tsydynzhapov, G.E., Kukushkin, I.V.: Imaging of powerful terahertz beams. In: EPJ Web of Conferences, vol. 195, pp. 05001 (2018)

    Article  Google Scholar 

  • Baker, E.A.M., Walker, B.: Fabry–Perot interferometers for use at submillimetre wavelengths. J. Phys. E Sci. Instrum. 15, 25–32 (1982)

    ADS  Article  Google Scholar 

  • Clarke, R.N., Rosenberg, C.B.: Fabry–Perot and open resonators at microwave and millimetre wave frequencies, 2–300 GHz. J. Phys. E Sci. Instrum. 15, 9–24 (1982)

    ADS  Article  Google Scholar 

  • Dyakonov, M., Shur, M.: Plasma wave electronics: novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron Devices 43, 1640–1645 (1996)

    ADS  Article  Google Scholar 

  • Fernandes, L.O.T., et al.: Photometry of THz radiation using Golay cell detector. In: 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, pp. 1–4 (2011)

  • Hillger, P., Grzyb, J., Jain, R., Pfeiffer, U.R.: Terahertz imaging and sensing applications with silicon-based technologies. IEEE Trans. Terahertz Sci. Technol. 9(1), 1–19 (2019)

    ADS  Article  Google Scholar 

  • Karasik, B.S., Sergeev, A.V., Prober, D.E.: Nanobolometers for thz photon detection. IEEE Trans. Terahertz Sci. Technol. 1, 97–111 (2011)

    ADS  Article  Google Scholar 

  • Kawase, K., Ogawa, Y., Watanabe, Y., Inoue, H.: Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11(20), 2549–2554 (2003)

    ADS  Article  Google Scholar 

  • Kleine-Ostmann, T., Nagatsuma, T.J.: A review on terahertz communications research. Infrared Milli Terahz Waves 32, 143–171 (2011)

    Article  Google Scholar 

  • Knap, W., But, D., Dyakonova, N., Coquillat, D., et al.: Terahertz imaging with GaAs and GaN plasma field effect transistors detectors. In: 2016 MIXDES - 23rd International Conference Mixed Design of Integrated Circuits and Systems, Lodz, pp. 74–77 (2016)

  • Knap, W., et al.: Terahertz waves. J. Infrared Millim. 30, 1319–1337 (2009)

    Google Scholar 

  • Knap, W., Kachorovskii, V., Deng, Y., Rumyantsev, S., Lu, J.-Q., Gaska, R., Shur, M.S., Simin, G., Hu, X., Asif Khan, M., Saylor, C.A., Brunel, L.C.: Nonresonant detection of terahertz radiation in field effect transistors. J. Appl. Phys. 91, 9346–9353 (2002)

    ADS  Article  Google Scholar 

  • Knap, W., Dyakonov, M., Coquillat, D., Teppe, F., Dyakonova, N., Łusakowski, J., Karpierz, K., Sakowicz, M., Valusis, G., Seliuta, D., Kasalynas, I., El Fatimy, A., Meziani, Y.M., Otsuji, T.: Field effect transistors for terahertz detection: Physics and first imaging applications. J. Infrared Millim. Terahertz Waves 30, 1319–1337 (2009)

    Google Scholar 

  • Liu, L., Rahman, S.M., Jiang, Z., Li, W., Fay, P.: Advanced terahertz sensing and imaging systems based on integrated III–V interband tunneling devices. Proc. IEEE 105(6), 1020–1034 (2017)

    Article  Google Scholar 

  • Marple, D.T.F.: Refractive index of GaAs. J. Appl. Phys. 35, 1241–1242 (1964)

    ADS  Article  Google Scholar 

  • Mittleman, D.M.: Twenty years of terahertz imaging. Opt. Express 26, 9417–9431 (2018)

    ADS  Article  Google Scholar 

  • Muravev, V.M., Gusikhin, P.A., Zarezin, A.M., Andreev, I.V., Gubarev, S.I., Kukushkin, I.V.: Novel 2D plasmon induced by metal proximity, 99, 241406(R) (2019)

  • Muravev, V.M., Kukushkin, I.V.: Plasmonic detector/spectrometer of subterahertz radiation based on two-dimensional electron system with embedded defect. Appl. Phys. Lett. 100, 082102–082104 (2012)

    ADS  Article  Google Scholar 

  • Muravev, V.M., Solov’ev, V.V., Fortunatov, A.A., Tsydynzhapov, G.E., Kukushkin, I.V.: On the response time of plasmonic terahertz detectors. J. Exp. Theor. Phys. Lett. 103(12), 792–794 (2012)

    Article  Google Scholar 

  • Muravev, V.M., Gusikhin, P.A., Andreev, I.V., Kukushkin, I.V.: Novel relativistic plasma excitations in a gated two-dimensional electron system. Phys. Rev. Lett. 114, 106805–106809 (2015)

    ADS  Article  Google Scholar 

  • Ojefors, E., Baktash, N., Zhao, Y., Hadi, R.A., Sherry, H., Pfeiffer, U.R.: Terahertz imaging detectors in a 65-nm CMOS SOI technology. In: 2010 Proceedings of ESSCIRC, Seville, pp. 486–489 (2010)

  • O’Reilly, E.P., Onischenko, A.I., Avrutin, E.A., Bhattacharyya, D., Marsh, J.H.: Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control. Electron. Lett. 34(21), 2035–2037 (1998)

    Article  Google Scholar 

  • Ruan, S., Yang, J., Zhang, M.: Real-time terahertz imaging using a 1.63 THz optically-pumped terahertz laser and a pyroelectric camera. In: Proceedings of the SPIE, 28th International Congress on High-Speed Imaging Photonics, 7126, 1261U–1–6 (2009)

  • Shaikhaidarov, R., Antonov, V.N., Casey, A., Kalaboukhov, A., Kubatkin, S., Harada, Y., Onomitsu, K., Tzalenchuk, A., Sobolev, A.: Detection of coherent terahertz radiation from a high-temperature superconductor Josephson junction by a semiconductor quantum-dot detector. Phys. Rev. Appl. 5, 024010–024015 (2016)

    ADS  Article  Google Scholar 

  • Shanera, E.A., Lee, M., Wanke, M.C., Grine, A.D., Reno, J.L., Allen, S.J.: Single-quantum-well grating-gated terahertz plasmon detectors. Appl. Phys. Lett. 87, 193507–193509 (2005)

    ADS  Article  Google Scholar 

  • Sheen, D.M., McMakin, D.L., Hall, T.E.: Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001)

    ADS  Article  Google Scholar 

  • Shen, Y.C., Lo, T., Taday, P.F., Cole, B.E., Tribe, W.R., Kemp, M.C.: Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116–241118 (2005)

    ADS  Article  Google Scholar 

  • Shur, M.S., Ryzhii, V.: Plasma wave electronics. Int. J. High Speed Electron. Syst. 13, 575–600 (2003)

    Article  Google Scholar 

  • Tsydynzhapov, G.E., Gusikhin, P.A., Muravev, V.M., Andreev, I.V., Kukushkin, I.V.: New terahertz security body scanner. In: 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, pp. 1–1 (2018)

  • Whatmore, W.R.: Pyroelectric devices and materials. Rep. Prog. Phys. 49, 1335–1386 (1986)

    ADS  Article  Google Scholar 

  • Zhang, X.-C., Xu, J.: Introduction to THz Wave Photonics. Springer, Berlin (2010)

    Book  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation Grant No. 19-72-30003

The authors would like to recognize Dr. Oleg Khrichenko, a technical writing specialist at TeraSense Group Inc., for his substantial contribution to drafting, language editing and proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shchepetilnikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the Russian Science Foundation Grant No. 19-72-30003.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shchepetilnikov, A.V., Kaysin, B.D., Gusikhin, P.A. et al. Optimization of the frequency response of a novel GaAs plasmonic terahertz detector. Opt Quant Electron 51, 376 (2019). https://doi.org/10.1007/s11082-019-2093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2093-4

Keywords

  • Terahertz
  • Detection
  • Frequency response