Role of oxygen concentrations on structural and optical properties of RF magnetron sputtered ZnO thin films

Abstract

We report an investigation on the effect of oxygen flow rate on the structural and optical properties of zinc oxide thin films prepared by RF magnetron sputtering. The structural measurements were carried using grazing incidence X-ray diffraction, atomic force microscopy and Raman spectroscopy. The role of oxygen partial pressure on the crystallinity, the surface morphology and vibrational modes has been established. The optical properties of the films were investigated using FR-Basic-VIS/NIR fitted with FR-Monitor software for film thickness, refractive index and color determination. The film thickness is observed to increase when oxygen is introduced at 4 sccm but eventual decrease with increase in the flow rate an indication of initial increase in rate of deposition followed by reduction. Elaborate explanations of these trends are provided.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Badre, C., Pauporté, T., Turmine, M., Lincot, D.: A ZnO nanowire array film with stable highly water-repellent properties. Nanotechnology 18, 365705 (2007)

    Article  Google Scholar 

  2. Chen, Y., Bagnall, D., Koh, H.-J., Park, K.-T., Hiraga, K., Zhu, Z., Yao, T.: Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization. J. Appl. Phys. 84, 3912–3918 (1998)

    ADS  Article  Google Scholar 

  3. Chiu, C., Pei, Z., Chang, S., Chang, S., Chang, S.: Effect of oxygen partial pressure on electrical characteristics of amorphous indium gallium zinc oxide thin-film transistors fabricated by thermal annealing. Vacuum 86, 246–249 (2011)

    ADS  Article  Google Scholar 

  4. Chuang, R.W., Wu, R.-X., Lai, L.-W., Lee, C.-T.: ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique. Appl. Phys. Lett. 91, 231113-1–231113-3 (2007)

    ADS  Google Scholar 

  5. Du, Y.-P., Zhang, Y.-W., Sun, L.-D., Yan, C.-H.: Efficient energy transfer in monodisperse Eu-doped ZnO nanocrystals synthesized from metal acetylacetonates in high-boiling solvents. J. Phys. Chem. C 112, 12234–12241 (2008)

    Article  Google Scholar 

  6. Hong, R., Qi, H., Huang, J., He, H., Fan, Z., Shao, J.: Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films. Thin Solid Films 473, 58–62 (2005)

    ADS  Article  Google Scholar 

  7. Huang, J.: Zinc oxide thin film transistors by radio frequency magnetron sputtering, pp. 7–47 (2014)

  8. Iqbal, A., Zakria, M., Mahmood, A.: Structural and spectroscopic analysis of wurtzite (ZnO)1–x (Sb2O3)x composite semiconductor. Prog. Nat. Sci. Mater. 25, 131–136 (2015)

    Article  Google Scholar 

  9. Janotti, A., Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501-1–126501-29 (2009)

    ADS  Article  Google Scholar 

  10. Jie, J., Morita, A., Shirai, H.: Role of oxygen atoms in the growth of magnetron sputter-deposited ZnO films. J. Appl. Phys. 108, 033521-1–033521-8 (2010)

    ADS  Article  Google Scholar 

  11. Karpina, V., Lazorenko, V., Lashkarev, C., Dobrowolski, V., Kopylova, L., Baturin, V., Pustovoytov, S., Karpenko, A.J., Eremin, S., Lytvyn, P.: Zinc oxide–analogue of GaN with new perspective possibilities. Cryst. Res. Technol. 39, 980–992 (2004)

    Article  Google Scholar 

  12. Kukla, R., Krug, T., Ludwig, R., Wilmes, K.: A highest rate self-sputtering magnetron source. Vacuum 41, 1968–1970 (1990)

    Article  Google Scholar 

  13. Kumar, V., Som, S., Kumar, V., Kumar, V., Ntwaeaborwa, O., Coetsee, E., Swart, H.: Tunable and white emission from ZnO: Tb3+ nanophosphors for solid state lighting applications. Chem. Eng. J. 255, 541–552 (2014)

    Article  Google Scholar 

  14. Levinson, J., Shepherd, F., Scanlon, P., Westwood, W., Este, G., Rider, M.: Conductivity behavior in polycrystalline semiconductor thin film transistors. J. Appl. Phys. 53, 1193–1202 (1982)

    ADS  Article  Google Scholar 

  15. Li, C., Wang, D., Li, Z., Li, X., Kawaharamura, T., Furuta, M.: Stoichiometry control of ZnO thin film by adjusting working gas ratio during radio frequency magnetron sputtering. J. Mater. 2013, 1–6 (2013)

    Article  Google Scholar 

  16. Look, D.C., Reynolds, D., Hemsky, J.W., Jones, R., Sizelove, J.: Production and annealing of electron irradiation damage in ZnO. Appl. Phys. Lett. 75, 811–813 (1999)

    ADS  Article  Google Scholar 

  17. Lupan, O., Chow, L., Chai, G., Chernyak, L., Lopatiuk-Tirpak, O., Heinrich, H.: Focused-ion-beam fabrication of ZnO nanorod-based UV photodetector using the in situ lift-out technique. Phys. Stat. Solidi (a) 205, 2673–2678 (2008a)

    ADS  Article  Google Scholar 

  18. Lupan, O., Shishiyanu, S., Chow, L., Shishiyanu, T.: Nanostructured zinc oxide gas sensors by successive ionic layer adsorption and reaction method and rapid photothermal processing. Thin Solid Films 516, 3338–3345 (2008b)

    ADS  Article  Google Scholar 

  19. Lupan, O., Chow, L., Chai, G.: A single ZnO tetrapod-based sensor. Sens. Actuat. B Chem. 141, 511–517 (2009a)

    Article  Google Scholar 

  20. Lupan, O., Shishiyanu, S., Ursaki, V., Khallaf, H., Chow, L., Shishiyanu, T., Sontea, V., Monaico, E., Railean, S.: Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications. Sol. Energy Mater. Sol. Cells 93, 1417–1422 (2009b)

    Article  Google Scholar 

  21. Lupan, O., Pauporté, T., Chow, L., Viana, B., Pellé, F., Ono, L., Cuenya, B.R., Heinrich, H.: Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256, 1895–1907 (2010)

    ADS  Article  Google Scholar 

  22. Nagata, T., Ashida, A., Fujimura, N., Ito, T.: The effects of Xe on an rf plasma and growth of ZnO films by rf sputtering. J. Appl. Phys. 95, 3923–3927 (2004)

    ADS  Article  Google Scholar 

  23. Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., Hosono, H.: Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269–1272 (2003)

    ADS  Article  Google Scholar 

  24. Otieno, F., Airo, M., Erasmus, R.M., Billing, D.G., Quandt, A., Wamwangi, D.: Structural and spectroscopic analysis of ex situ annealed RF sputtered aluminium doped zinc oxide thin films. J. Appl. Phys. 122, 0753031–07530310 (2017)

    Article  Google Scholar 

  25. Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., Avrutin, V., Cho, S.-J., Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301-1–041301-11 (2005)

    ADS  Article  Google Scholar 

  26. Pauporte, T., Rathouský, J.: Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants. J. Phys. Chem. C 111, 7639–7644 (2007)

    Article  Google Scholar 

  27. Pauporté, T., Lincot, D., Viana, B., Pellé, F.: Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition. Appl. Phys. Lett. 89, 233112-1–233112-3 (2006)

    ADS  Article  Google Scholar 

  28. Reynolds, D., Look, D.C., Jogai, B., Litton, C., Cantwell, G., Harsch, W.: Valence-band ordering in ZnO. Phys. Rev. B 60, 2340–2344 (1999)

    ADS  Article  Google Scholar 

  29. Saravanakumar, K., Gopinathan, C., Mahalakshmi, K., Ganesan, V., Sathe, V., Sanjeeviraja, C.: XPS and Raman studies on (002) oriented nanocrystalline ZnO films showing temperature dependent optical red shift. Adv. Stud. Theor. Phys. 5, 155–170 (2011)

    Google Scholar 

  30. Spizzirri, P., Fang, J.-H., Rubanov, S., Gauja, E., Prawer, S.: Nano-Raman spectroscopy of silicon surfaces. arXiv preprint http://arxiv.org/abs/1002.2692 (2010)

  31. Sultan, Md, Sultana, N.: Analysis of reflectance and transmittance characteristics of optical thin film for various film materials, thicknesses and substrates. J. Electr. Electron. Syst. 4, 1–4 (2015)

    Article  Google Scholar 

  32. Szczyrbowski, J., Dietrich, A., Hartig, K.: Bendable silver-based low emissivity coating on glass. Sol. Energy Mater. 19, 43–53 (1989)

    Article  Google Scholar 

  33. Thanikaikarasan, S., Mahalingam, T., Sundaram, K., Kathalingam, A., Kim, Y.D., Kim, T.: Growth and characterization of electrosynthesized iron selenide thin films. Vacuum 83, 1066–1072 (2009)

    ADS  Article  Google Scholar 

  34. Thomas, D.: The exciton spectrum of zinc oxide. J. Phys. Chem. Solids 15, 86–96 (1960)

    ADS  Article  Google Scholar 

  35. Tominaga, K., Iwamura, S., Fujita, I., Shintani, Y., Tada, O.: Influence of bombardment by energetic atoms on c-axis orientation of ZnO films. Jpn. J. Appl. Phys. 21, 999–1002 (1982)

    ADS  Article  Google Scholar 

  36. Tzolov, M., Tzenov, N., Dimova-Malinovska, D., Kalitzova, M., Pizzuto, C., Vitali, G., Zollo, G., Ivanov, I.: Modification of the structure of ZnO: Al films by control of the plasma parameters. Thin Solid Films 396, 276–281 (2001)

    ADS  Article  Google Scholar 

  37. Valliyil Sasi, V., Iqbal, A., Chaik, K., Iacopi, A., Mohd-Yasin, F.: RF sputtering, post-annealing treatment and characterizations of ZnO (002) thin films on 3C-SiC (111)/Si (111) substrates. Micromachines 8(148), 2–9 (2017)

    Google Scholar 

  38. Wang, R., Liu, C., Huang, J.-L., Chen, S.-J., Tseng, Y.-K., Kung, S.-C.: ZnO nanopencils: efficient field emitters. Appl. Phys. Lett. 87, 013110-1–013110-3 (2005)

    ADS  Article  Google Scholar 

  39. Willander, M., Nur, O., Zhao, Q., Yang, L., Lorenz, M., Cao, B., Pérez, J.Z., Czekalla, C., Zimmermann, G., Grundmann, M.: Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 20, 332001-1–332001-40 (2009)

    Article  Google Scholar 

  40. Yoshida, T., Zhang, J., Komatsu, D., Sawatani, S., Minoura, H., Pauporté, T., Lincot, D., Oekermann, T., Schlettwein, D., Tada, H.: Electrodeposition of inorganic/organic hybrid thin films. Adv. Funct. Mater. 19, 17–43 (2009)

    Article  Google Scholar 

  41. Youssef, S., Combette, P., Podlecki, J., Asmar, R.A., Foucaran, A.: Structural and optical characterization of ZnO thin films deposited by reactive rf magnetron sputtering. Cryst. Growth Des. 9, 1088–1094 (2008)

    Article  Google Scholar 

  42. Zhang, J., He, G., Zhu, L., Liu, M., Pan, S., Zhang, L.: Effect of oxygen partial pressure on the structural and optical properties of ZnO film deposited by reactive sputtering. Appl. Surf. Sci. 253, 9414–9421 (2007)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of the Witwatersrand, Material Physics Research Institute, School of Physics; the XRD and MMU facilities at Wits, National Research Foundation (NRF) Grant Number (85675) and Material Energy Research Group (MERG) for funding. Special thanks to Erasmus+ office for support to carry out optical measurements at the University of West Attica, Egaleo, Greece and to GCRF-START: Synchrotron Techniques for African Research and Technology for postdoctoral funding (F.O.).

Funding

Funding was provided by UKRI (Grant No. ST/R002754/1), National Research Foundation (Grant No. 85675) and University of the Witwatersrand, Johannesburg (2016–2018).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Wamwangi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Otieno, F., Airo, M., Ganetsos, T. et al. Role of oxygen concentrations on structural and optical properties of RF magnetron sputtered ZnO thin films. Opt Quant Electron 51, 359 (2019). https://doi.org/10.1007/s11082-019-2076-5

Download citation

Keywords

  • Zinc oxide
  • Photo-luminescence
  • Thin films
  • Raman