Skip to main content
Log in

An analytical model for vertical dual-cavity quantum-dot optical amplifiers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Novel closed-form model for the threshold conditions and the optical gains of vertical dual-cavity semiconductor optical amplifier (VDC-SOA) is derived. Expressions for the transfer functions that relate the average photon density inside the two cavities to the incident photon density are derived. The model is simple, accurate and easy to use for designing dual-wavelength laser amplifiers. Good agreement is obtained between the analytical model and numerical calculations. The transmitted and reflective bistability characteristics of quantum dot VDC-SOA have been investigated. The threshold condition of each mode is expressed in terms of the top-cavity and the bottom-cavity currents. The dual modes \(\lambda_{o}^{ + }\) and \(\lambda_{o}^{ - }\) show different bistability behavior as a function of the top cavity current when the device operates at fixed operating point below the threshold curve. We find that the contrast ratio of mode \(\lambda_{o}^{ + }\) is a weak function of the device currents, and the hysteresis width increases when the top cavity current is increased. For mode \(\lambda_{o}^{ - }\) large contrast ratio and hysteresis width are obtained when the two cavities exhibit equal currents. Our analysis also reveals that the spectral characteristics of mode \(\lambda_{o}^{ + }\) are different from that of mode \(\lambda_{o}^{ - }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ababneh, J., Qasaimeh, O.: Simple model for quantum-dot semiconductor optical amplifiers using artificial neural networks. IEEE Trans. Electron Devices 53(7), 1543–1550 (2006)

    Article  ADS  Google Scholar 

  • Blood, P.: Quantum Efficiency of Quantum Dot Lasers. IEEE J. Sel. Top. Quantum Electron. 23(6), 190060(1)–190060(8) (2017)

    Article  Google Scholar 

  • Brunner, M., Gulden, K., Hövel, R., Moser, M., Carlin, J.F., Stanley, R.P., Ilegems, M.: Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser. IEEE Photon. Technol. Lett. 12(10), 1316–1318 (2006)

    Article  Google Scholar 

  • Chen, C., Choquette, K.: Analog and digital functionalities of composite resonator vertical cavity lasers. J. Lightw. Technol. 28(7), 1003–1010 (2010)

    Article  ADS  Google Scholar 

  • Choquette, K., Chen, C., Harren, A., Grasso, D., Plant, D.: Reconfigurable digital functionality of composite resonator vertical Cavity lasers. IEEE J. Quantum Electron. 48(2), 153–159 (2012)

    Article  ADS  Google Scholar 

  • Dimitriadou, E., Zoiros, K.: All-optical XOR gate using single quantum-dot SOA and optical filter. IEEE J. Lightw. Technol. 31(23), 3813–8321 (2013)

    Article  ADS  Google Scholar 

  • Gioannini, M., Montrosset, I.: Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers. IEEE J. Quantum Electron. 43(10), 941–949 (2007)

    Article  ADS  Google Scholar 

  • Huang, Z., Zimmer, M., Hepp, S., Jetter, M., Michler, P.: Optical gain and lasing properties of InP/AlGaInP quantum-dot laser diode emitting at 660 nm. IEEE J. Quantum Electron. 55(2), 2000307(1)–2000307(7) (2019)

    Article  Google Scholar 

  • Hurtado, A., Gonzalez-Marcos, A., Martin-Pereda, J.: Modeling reflective bistability in vertical-cavity semiconductor optical amplifiers. IEEE J. Quantum Electron. 41(3), 376–383 (2005)

    Article  ADS  Google Scholar 

  • Kim, J., Su, H., Minin, S., Chuang, S.: Comparison of linewidth enhancement factor between p-doped and undoped quantum-dot lasers. IEEE Photon. Technol. Lett. 18(9), 1022–1024 (2006)

    Article  ADS  Google Scholar 

  • Leinonen, T., Morozov, Y., Härkönen, A., Pessa, M.: Vertical external-cavity surface-emitting laser for dual-wavelength generation. IEEE Photon. Technol. Lett. 17(12), 2508–2510 (2005)

    Article  ADS  Google Scholar 

  • Morozov, Y., Leinonen, T., Härkönen, A., Pessa, M.: Simultaneous dual-wavelength emission from vertical external-cavity surface-emitting laser: a numerical modeling. IEEE J. Quantum Electron. 42(10), 1055–1061 (2006)

    Article  ADS  Google Scholar 

  • Morozov, Y., Morozov, M.: Intracavity nonlinear frequency down-conversion in a continuous-wave operation regime of a dual-wavelength vertical-external-cavity surface-emitting laser. IEEE J. Sel. Top. Quantum Electron. 19(5), 1702105(1)–1702105(5) (2013)

    Article  ADS  Google Scholar 

  • Nishi, K., Takemasa, K., Sugawara, M., Arakawa, Y.: Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron. 23(6), 1901007(1)–1901007(7) (2017)

    Article  Google Scholar 

  • Norman, J., Jung, D., Zhang, Z., Wan, Y., Liu, S., Shang, C., Herrick, R., Chow, W., Gossard, A., Bowers, J.: A review of high performance quantum dot lasers on silicon. IEEE J. Quantum Electron. 55(2), 2000511(1)–2000511(11) (2019)

    Article  Google Scholar 

  • Ohtsuki, T., Matsuura, M.: Wavelength conversion of 25-Gbit/s PAM-4 signals using a quantum-dot SOA. IEEE Photon. Technol. Lett. 30(5), 459–462 (2018)

    Article  ADS  Google Scholar 

  • Piprek, J., Björlin, S., Bowers, J.: Design and analysis of vertical-cavity semiconductor optical amplifiers. IEEE J. Quantum Electron. 37(1), 127–134 (2001)

    Article  ADS  Google Scholar 

  • Qasaimeh, O.: Linewidth enhancement factor of quantum dot lasers. Opt. Quant. Electron. 37(5), 495–507 (2005)

    Article  Google Scholar 

  • Qasaimeh, O.: Novel tunable bistable quantum-dot vertical-cavity semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 28(14), 1553–1556 (2016)

    Article  ADS  Google Scholar 

  • Royo, P., Koda, R., Coldren, L.: Vertical cavity semiconductor optical amplifiers: comparison of Fabry–Pérot and rate equation approaches. IEEE J. Quantum Electron. 38(3), 279–284 (2002)

    Article  ADS  Google Scholar 

  • Sanchez, D., Cerutti, L., Tournié, E.: Mid-IR GaSb-based bipolar cascade VCSELs. IEEE Photon. Technol. Lett. 25(9), 882–884 (2013)

    Article  ADS  Google Scholar 

  • Scheller, M., Baker, C., Koch, S., Moloney, J., Jones, R.: High power dual-wavelength VECSEL based on a multiple folded cavity. IEEE Photon. Technol. Lett. 29(10), 790–793 (2017)

    Article  ADS  Google Scholar 

  • Schneider, S., Borri, P., Langbein, W., Woggon, U., Sellin, R., Ouyang, D., Bimberg, D.: Excited-state gain dynamics in InGaAs quantum-dot amplifiers. IEEE Photon.Technol. Lett. 17(10), 2014–2016 (2005)

    Article  ADS  Google Scholar 

  • Wen, P., Sanchez, M., Gross, M., Esener, S.: Observation of bistability in a vertical-cavity semiconductor optical amplifier (VCSOA). Opt. Express 10(22), 1273–1278 (2002)

    Article  ADS  Google Scholar 

  • Xia, M., Ghafouri-Shiraz, H.: Quantum transmission line modeling method and its application to quantum dot amplifiers. IEEE J. Quantum Electron. 52(5), 5100107 (2016)

    Article  Google Scholar 

  • Young, E., Grasso, D., Lehman, A., Choquette, K.: Dual-channel wavelength-division multiplexing using a composite resonator vertical-cavity laser. IEEE Photon. Technol. Lett. 16(4), 966–968 (2004)

    Article  ADS  Google Scholar 

  • Zajnulina, M., Lingnau, B., Ludge, K.: Four-wave mixing in quantum-dot semiconductor optical amplifiers: a detailed analysis of the nonlinear effects. IEEE J. Sel. Top. Quantum Electron. 23(6), 3000112(1)–3000112(12) (2017)

    Article  Google Scholar 

  • Zhang, W., Yu, S.: Optical flip-flop using bistable vertical-cavity semiconductor optical amplifiers with anti-resonant reflecting optical waveguide. IEEE J. Lightw. Technol. 27(21), 4703–4710 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Qasaimeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasaimeh, O. An analytical model for vertical dual-cavity quantum-dot optical amplifiers. Opt Quant Electron 51, 351 (2019). https://doi.org/10.1007/s11082-019-2071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2071-x

Keywords

Navigation