Advertisement

Comparative study of energy and footprint minimization limit for two types of graphene-assisted ring-shape modulators

  • Daniel M. C. NevesEmail author
  • João B. R. Silva
Article
  • 48 Downloads
Part of the following topical collections:
  1. 2018 - Optical Wave and Waveguide Theory and Numerical Modelling

Abstract

In this paper, a numerical investigation has been performed on the limits of miniaturization for a graphene-assisted modulator considering two different configurations, in both cases the critical coupling condition representing the OFF state, and the transmission level of − 3 dB the ON state. In addition, the power consumption per bit of 100 fJ/bit was established as the cutoff parameter for both modulator configurations, as well as the minimum chemical potential for the ON state of 0.4 eV for the hybrid modulator. Considering the parameters aforementioned, our results showed that both configurations of modulators have great potential of miniaturization, high modulation speed and low power consumption.

Keywords

Graphene-based Modulators Optoelectronics SOI plattforn Microring resonator 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)–Finance Code 001, and CNPq via Grant No. 458867/2014-4.

References

  1. Amin, R., Ma, Z., Maiti, R., Khan, S., Khurgin, J.B., Dalir, H., Sorger, V.J.: Attojoule-efficient graphene optical modulators. Appl. Opt. 57, D130–D140 (2018)CrossRefGoogle Scholar
  2. Bonnacorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)ADSCrossRefGoogle Scholar
  3. Cheng, Z., Tsang, H.K., Wang, X., Xu, K., Xu, J.B.: In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE J. Sel. Top. Quantum Electron. 20(1), 43–48 (2014)ADSCrossRefGoogle Scholar
  4. Ding, Y., Zhu, X., Xiao, S., Hu, H., Frandsen, L.H., Mortensen, N.A., Yvind, K.: Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator. Nano Lett. 15(7), 4393–4400 (2015)ADSCrossRefGoogle Scholar
  5. Du, W., Li, E.-P., Hao, R.: Tunability analysis of a graphene-embedded ring modulator. IEEE Photon. Technol. Lett. 26(20), 2008–2011 (2014a)ADSCrossRefGoogle Scholar
  6. Du, W., Hao, R., Li, E.-P.: The study of few-layer graphene based Mach-Zehnder modulator. Opt. Commun. 323, 49–53 (2014b)ADSCrossRefGoogle Scholar
  7. Gosciniak, J., Tan, D.T.H.: Theoretical investigation of graphene-based photonic modulators. Sci. Rep. 3, 1897–1903 (2013)ADSCrossRefGoogle Scholar
  8. Hanson, G.W.: Dyadic Green’s functions and guided surface waves for surface conductivity model of graphene. J. Appl. Phys. 103, 064302-1–064302-8 (2008)ADSCrossRefGoogle Scholar
  9. Hao, R., Wei, D., Li, E.-P., Chen, H.-S.: Graphene assisted TE/TM-independent polarizer based on mach-zehnder interferometer. Photonics Technol. Lett. IEEE 27(10), 1112–1115 (2015)ADSCrossRefGoogle Scholar
  10. Jin, M., Shu, H., Tao, Y., Wu, Z., Wang, X. (2018). Graphene based silicon microdisk modulator. In: 2018 Asia Communications and Photonics Conference (ACP), IEEE. pp. 1–3Google Scholar
  11. Kim, K., Choi, J.-Y., Kim, T., Cho, S.-H., Chung, H.-J.: A role for graphene in silicon-based semiconductor devices. Nature 476, 338–344 (2011)ADSCrossRefGoogle Scholar
  12. Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: A graphene-based broadband optical modulator. Nat. Mater. 474, 64–67 (2011)Google Scholar
  13. Liu, M., Yin, X., Zhang, X.: Double-layer graphene optical modulator. Nano Lett. 12(3), 1482–1485 (2012)ADSCrossRefGoogle Scholar
  14. Lu, Z., Zhao, W.: Nanoscale electro-optic modulators based on graphene-slot waveguides. J. Opt. Soc. Am. B 29(6), 1490–1496 (2012)ADSCrossRefGoogle Scholar
  15. Malitson, I.H.: Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1208 (1965)ADSCrossRefGoogle Scholar
  16. Malitson, I.H., Dodge, M.J.: Refractive index and birefringence of synthetic sapphire. J. Opt. Soc. Am. 62, 1405 (1972)Google Scholar
  17. Meng, Y., Lu, R., Shen, Y., Liu, Y., Gong, M.: Ultracompact graphene-assisted ring resonator optical router. Opt. Commun. 405, 73–79 (2017)ADSCrossRefGoogle Scholar
  18. Midrio, M., Boscolo, S., Moresco, M., Romagnoli, M., Angelis, C., Locatelli, A., Capobianco, A.-D.: Graphene–assisted critically–coupled optical ring modulator. Opt. Express 20(21), 23144–23155 (2012)ADSCrossRefGoogle Scholar
  19. Neves, D.M.C., Mazulquim, D.B., Neto, L.G., Borges, B.V. (2014) Graphene-based SOI microdonut resonator as a platform for electro-absorption modulators. In: Latin America Optics and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2014)Google Scholar
  20. Qiu, C., Gao, W., Vajtai, R., Ajayan, P.M., Kono, J., Xu, Q.: Efficient modulation of 155 µm radiation with gated graphene on a silicon microring resonator. Nano Lett. 14(12), 6811–6815 (2014)ADSCrossRefGoogle Scholar
  21. Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photonic 4, 518–526 (2010)ADSCrossRefGoogle Scholar
  22. Salzberg, C.D., Villa, J.J.: Infrared refractive indexes of silicon, germanium and modified selenium glass. J. Opt. Soc. Am. 47, 244–246 (1957)ADSCrossRefGoogle Scholar
  23. Sensale-Rodriguez, B.: Graphene based optoelectronics. IEEE J. Lightw. Technol. 33(5), 1100–1108 (2015)ADSCrossRefGoogle Scholar
  24. Shiramin, L.A., Van Thourhout, D.: Graphene modulators and switches integrated on silicon and silicon nitride waveguide. IEEE J. Sel. Top. Quantum Electron. 23(1), 94–100 (2016)CrossRefGoogle Scholar
  25. Soref, R.A., Bennett, B.R.: Electrooptical effects in silicon. IEEE J. Quantum Electron. QE-23(1), 123–129 (1987)ADSCrossRefGoogle Scholar
  26. Stauber, T., Peres, N.M.R., Geim, A.K.: The optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432-1–085432-8 (2008)ADSGoogle Scholar
  27. Wang, J., Cheng, Z., Shu, C., Tsang, H.K.: Optical absorption in graphene-on-silicon nitride microring resonators. IEEE Photonics Technol. Lett. 27(16), 1765–1767 (2015)ADSCrossRefGoogle Scholar
  28. Xiao, H., Long, Y., Ji, M., Wang, A., Zhu, L., Ruan, Z., Wang, Y., Wang, J.: Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal. Opt. Express 24, 7168–7177 (2016)ADSCrossRefGoogle Scholar
  29. Yariv, A.: Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 14(4), 483–485 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Teleinformatic EngineeringFederal University of CearáFortalezaBrazil

Personalised recommendations