Skip to main content
Log in

Role of higher order plasmonic modes in one-dimensional nanogratings

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

By theoretically investigating the optical behavior of one-dimensional gold nanogratings using Fourier Modal Method, we have shown that both integer and non-integer multiples of surface plasmon polariton wavelengths should be taken into consideration in special optical contrast ratio for highly sensitive sensing. The emergence of higher modes is the key factor for the formation of observed plasmonic band gap. Through considering the significant role of grating period and thickness respectively in horizontal and vertical surface resonances, it was demonstrated that for gold thicknesses below 100 nm, the dominant phenomenon is horizontal surface resonances while for increased thicknesses both horizontal and vertical surface resonances mediate. The transmission minima are insensitive to the grating thickness, which confirms that their origins are not vertical surface resonances. This study can open an avenue towards designing highly sensitive sensors with focus not only on the plasmonic resonance wavelength but also on its integer and non-integer multiples whose origins should be investigated in both horizontal and vertical surface resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barnes, W.L., et al.: Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys. Rev. B 54(9), 6227–6244 (1996)

    Article  ADS  Google Scholar 

  • Cao, Q., Lalanne, P.: Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett. 88(5), 057403 (2002)

  • Collin, S., et al.: Strong discontinuities in the complex photonic band structure of transmission metallic gratings. Phys. Rev. B 63(3), 033107 (2001)

  • Crouse, D., Keshavareddy, P.: Polarization independent enhanced optical transmission in one-dimensional gratings and device applications. Opt. Express 15(4), 1415–1427 (2007)

    Article  ADS  Google Scholar 

  • Devaux, E., et al.: Launching and decoupling surface plasmons via micro-gratings. Appl. Phys. Lett. 83(24), 4936–4938 (2003)

    Article  ADS  Google Scholar 

  • Egorov, D., et al.: Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures. Phys. Rev. B 70(3), 033404 (2004)

  • Essig, S., Busch, K.: Generation of adaptive coordinates and their use in the Fourier modal method. Opt. Express 18(22), 23258–23274 (2010)

    Article  ADS  Google Scholar 

  • Gao, H., et al.: Extraordinary optical transmission for TE wave through metallic sub-wavelength grating with slits filled with dielectric. Opt. Int. J. Light Electron Opt. 125(22), 6687–6690 (2014)

    Article  Google Scholar 

  • Gotz, P., et al.: Normal vector method for the RCWA with automated vector field generation. Opt. Express 16(22), 17295–17301 (2008)

    Article  ADS  Google Scholar 

  • Hamidi, S. M., Mahboubi, M., Mohseni, S. M.,  Azizi, B., Ghaderi, A., Javadi, S.: Demonstration of tunable complex refractive index of graphene covered one dimensional photonic crystals. Opt. Quantum Electron. 50(4), 182–186 (2018)

    Article  Google Scholar 

  • Hamidi, S.M., Razavinia, M., Tehranchi, M.M.: Enhanced optically induced magnetization due to inverse Faraday effect in plasmonic nanostructures. Opt. Commun. 338, 240–245 (2015)

    Article  ADS  Google Scholar 

  • Homola, J.: Surface Plasmon Resonance Based Sensors. Springer Series on Chemical Sensors and Biosensors. Springer, Berlin (2006)

    Google Scholar 

  • Hooper, I.R., Sambles, J.R.: Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces. Phys. Rev. B 70(4), 045421 (2004)

  • Inagaki, T., et al.: Coupled surface plasmons in periodically corrugated thin silver films. Phys. Rev. B 32(10), 6238–6245 (1985)

    Article  ADS  Google Scholar 

  • Iqbal, T., Afsheen, S.: Extraordinary optical transmission: role of the slit width in 1D metallic grating on higher refractive index substrate. Curr. Appl. Phys. 16(4), 453–458 (2016a)

    Article  ADS  Google Scholar 

  • Iqbal, T., Afsheen, S.: One dimensional plasmonic grating: high sensitive biosensor. Plasmonics 12, 1–7 (2016b)

    Google Scholar 

  • Iqbal, T., Afsheen, S.: Plasmonic band gap: role of the slit width in 1D metallic grating on Higher Refractive Index substrate. Plasmonics 11(3), 885–893 (2016c)

    Article  Google Scholar 

  • Javaid, M., Iqbal, T.: Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics 11(1), 167–173 (2016)

    Article  Google Scholar 

  • Kim, H., Park, J., Lee, B.: Fourier Modal Method and its Applications in Computational Nanophotonics. CRC Press, Boca Raton (2012)

    Google Scholar 

  • Kim, S.H., et al.: Coupling of air/metal and substrate/metal surface plasmon polaritons in Au slit arrays fabricated on quartz substrate. Opt. Express 21(19), 21871–21878 (2013)

    Article  ADS  Google Scholar 

  • Koev, S.T., et al.: An efficient large-area grating coupler for surface plasmon polaritons. Plasmonics 7(2), 269–277 (2012)

    Article  Google Scholar 

  • Lee, K.-L., Wang, W.-S., Wei, P.-K.: Comparisons of surface plasmon sensitivities in periodic gold nanostructures. Plasmonics 3(4), 119–125 (2008)

    Article  Google Scholar 

  • Lue, N., et al.: Tissue refractometry using Hilbert phase microscopy. Opt. Lett. 32(24), 3522–3524 (2007)

    Article  ADS  Google Scholar 

  • Maier, S.A.: Plasmonics: Fundamentals and Applications, 1st edn. Springer, New York (2007)

    Book  Google Scholar 

  • Pang, Y., Genet, C., Ebbesen, T.W.: Optical transmission through subwavelength slit apertures in metallic films. Opt. Commun. 280(1), 10–15 (2007)

    Article  ADS  Google Scholar 

  • Parker, S.T., et al.: Biocompatible silk printed optical waveguides. Adv. Mater. 21(23), 2411–2415 (2009)

    Article  Google Scholar 

  • Ropers, C., et al.: Femtosecond light transmission and subradiant damping in plasmonic crystals. Phys. Rev. Lett. 94(11), 113901 (2005)

  • Schuster, T., et al.: Normal vector method for convergence improvement using the RCWA for crossed gratings. J. Opt. Soc. Am. A 24(9), 2880–2890 (2007)

    Article  ADS  Google Scholar 

  • Sohrabi, F., Hamidi, S.M.: Neuroplasmonics: from Kretschmann configuration to plasmonic crystals. Eur. Phys. J. Plus 131(7), 221–236 (2016)

    Article  Google Scholar 

  • Sohrabi, F., Hamidi, S.M.: Fabrication methods of plasmonic and magnetoplasmonic crystals: a review. Eur. Phys. J. Plus 132(1), 15–36 (2017a)

    Article  Google Scholar 

  • Sohrabi, F., Hamidi, S.M.: Optical detection of brain activity using plasmonic ellipsometry technique. Sens. Actuators B Chem. 251, 153–163 (2017b)

    Article  Google Scholar 

  • Stéphane, C., et al.: Horizontal and vertical surface resonances in transmission metallic gratings. J. Opt. A Pure Appl. Opt. 4(5), S154-S160 (2002)

    Article  Google Scholar 

  • Sun, Z., Jung, Y.S., Kim, H.K.: Role of surface plasmons in the optical interaction in metallic gratings with narrow slits. Appl. Phys. Lett. 83(15), 3021–3023 (2003)

    Article  ADS  Google Scholar 

  • Takakura, Y.: Optical resonance in a narrow slit in a thick metallic screen. Phys. Rev. Lett. 86(24), 5601–5603 (2001)

    Article  ADS  Google Scholar 

  • Tamir, T., Wang, H.C., Oliner, A.A.: Wave propagation in sinusoidally stratified dielectric media. IEEE Trans. Microw. Theory Techn. 12(3), 323–335 (1964)

    Article  ADS  Google Scholar 

  • Vempati, S., Iqbal, T., Afsheen, S.: Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J. Appl. Phys. 118(4), 043103 (2015)

    Article  ADS  Google Scholar 

  • Weiss, T.: Advanced Numerical and Semi-analytical Scattering Matrix Calculations for Modern Nano-Optics. Physikalisches Institute der Universitat Stuttgart, Stuttgart (2011)

    Google Scholar 

  • Weiss, T., et al.: Matched coordinates and adaptive spatial resolution in the Fourier modal method. Opt. Express 17(10), 8051–8061 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant from Cognitive Sciences and Technologies Council (2302) and Ministry of Science Research and Technology of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedeh Mehri Hamidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, F., Hamidi, S.M. & Mohammadi, E. Role of higher order plasmonic modes in one-dimensional nanogratings. Opt Quant Electron 51, 241 (2019). https://doi.org/10.1007/s11082-019-1958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1958-x

Keywords

Navigation