Quasi photonic crystal fiber for chemical sensing purpose in the terahertz regime: design and analysis

Abstract

In this work, a novel quasi-photonic crystal fiber has been proposed, for the first time, in the chemical sensing purpose in the terahertz (THz) regime. Along with the sensing response, power fraction, scattering loss, effective mode area, and V parameter have been numerically computed by the full-vector finite element method with anisotropic circular perfect matched layers. Numerically computed results show that the proposed sensor offers 70.94%, 71.06%, and 72.19% sensing responses for targeted analytes water, ethanol, and benzene respectively at the optical frequency f = 1 THz. Besides, effective mode area of 1.43 × 105 µm2, 1.48 × 105 µm2 and 1.55 × 105 µm2 have found at the same time for the same analytes. The Q-PCF model proposed in this paper have bright aspects for practical applications in clinical and diagnostic sensing, medical imaging, environmental monitoring purpose and many other fields related to it.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ademgil, H.: Highly sensitive octagonal photonic crystal fiber based sensor. Opt. Int. J. Light Electron Opt. 125(20), 6274–6278 (2014)

    Article  Google Scholar 

  2. Ademgil, H., Haxha, S.: PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors 15(12), 31833–31842 (2015)

    Article  Google Scholar 

  3. Ademgil, H., Haxha, S.: Highly birefringent nonlinear PCF for optical sensing of analytes in aqueous solutions. Opt. Int. J. Light Electron Opt. 127(16), 6653–6660 (2016)

    Article  Google Scholar 

  4. Ahmed, K., Paul, B.K., Chowdhury, S., Sen, S., Islam, M.I., Islam, M.S., Hasan, M.R., Asaduzzaman, S.: Design of a single-mode photonic crystal fibre with ultra-low material loss and large effective mode area in THz regime. IET Optoelectron. 11(6), 265–271 (2017)

    Article  Google Scholar 

  5. Ana, A., Pinto, M.R., Lopez-Amo, M.: Photonic crystal fibers for sensing applications. J. Sens. 2012, 1–21 (2012)

    Google Scholar 

  6. Arif, M.F.H., Biddut, M.J.H.: Enhancement of relative sensitivity of photonic crystal fiber with high birefringence and low confinement loss. Opt. Int. J. Light Electron Opt. 131, 697–704 (2017a)

    Article  Google Scholar 

  7. Arif, M.F.H., Biddut, M.J.H.: A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications. Sens. Bio-Sens. Res. 12, 8–14 (2017b)

    Article  Google Scholar 

  8. Asaduzzaman, S., Ahmed, K.: Microarray-core based circular photonic crystal fiber for high chemical sensing capacity with low confinement loss. Optica Applicata 47(1), 41–49 (2017)

    Google Scholar 

  9. Ayyanar, N., Vigneswaran, D., Sharma, M., Sumathi, M., Mani Rajan, M.S., Konar, S.: Hydrostatic pressure sensor using high birefringence photonic crystal fibers. IEEE Sens. J. 17(3), 650–656 (2016)

    ADS  Article  Google Scholar 

  10. Ayyanar, N., Vasantha Jayakantha Raja, R., Vigneswaran, D., Lakshmi, B., Sumathi, M., Porsezian, K.: Highly efficient compact temperature sensor using liquid infiltrated asymmetric dual elliptical core photonic crystal fiber. Opt. Mater. 64, 574–582 (2017)

    ADS  Article  Google Scholar 

  11. Chen, H.L., Li, S.G., Li, J.S., Fan, Z.K.: Magnetic field sensor based on magneticfluid selectively infilling photonic crystal fibers. IEEE Photon. Technol. Lett. 27(7), 717–720 (2015)

    ADS  Article  Google Scholar 

  12. Cherif, R., Salem, A.B., Zghal, M., Besnard, P., Chartier, T., Brilland, L., Troles, J.: Highly nonlinear As 2 Se 3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation. Opt. Eng. 49(9), 095002 (2010)

    ADS  Article  Google Scholar 

  13. Dash, J.N., Jha, R.: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014)

    ADS  Article  Google Scholar 

  14. Du, C., Wang, Q., Wang, X., et al.: High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating. Instrum. Sci. Technol. 45(2), 181–189 (2017)

    Article  Google Scholar 

  15. Huttunen, A., Torma, P.: optimization of dual-core and microstructure fiber geometrics for dispersion compensation and large mode area. Opt. Exp. 3(2), 627–635 (2005)

    ADS  Article  Google Scholar 

  16. Islam, M.A., Alam, M.S.: Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over wavelength bands. IEEE Photon. Technol. Lett. 24(11), 930–932 (2012)

    ADS  Article  Google Scholar 

  17. Islam, M.S., Paul, B.K., Ahmed, K., Asaduzzaman, S.: Rhombic core photonic crystal fiber for sensing applications: modeling and analysis. Opt. Int. J. Light Electron. Opt. 157, 1357–1365 (2018a)

    Article  Google Scholar 

  18. Islam, M.S., Sultana, J., Dinovitser, A., Ng, B.W.H., Abbott, D.: A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications. Opt. Commun. 413, 242–248 (2018b)

    ADS  Article  Google Scholar 

  19. Joshva Raj, G., Raja, Vasantha Jayakantha, R., Grelu, P., Ganapathy, R., Porsezian, K., : Effect of temperature on supercontinuum generation in water-core photonic crystal fiber. IEEE Photon. Technol. Lett. 28, 1 (2015)

    Google Scholar 

  20. Knight, J.C.: Photonic crystal fibres. Nature 424, 847–851 (2003)

    ADS  Article  Google Scholar 

  21. Kumar, V.R.K., George, A.K., Knight, J.C., Russell, P.S.J.: Tellurite photonic crystal fiber. Opt. Express 11(20), 2641–2645 (2003)

    ADS  Article  Google Scholar 

  22. Morshed, M., Hassan, M.I., Roy, T.K., Uddin, M.S., Razzak, S.A.: Microstructure core photonic crystal fiber for gas sensing applications. Appl. Opt. 54, 8637–8643 (2015)

    ADS  Article  Google Scholar 

  23. Olyaee, S., Naraghi, A.: Design and optimization of the index-guiding photonic crystal fiber gas sensor. Photonic Sens. 3(2), 131–136 (2013)

    ADS  Article  Google Scholar 

  24. Olyaee, S., Naraghi, A., Ahmadi, V.: High sensitivity evanescent field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Opt. Int. J. Light Electron Opt. 125, 596–600 (2014)

    Article  Google Scholar 

  25. Peng, Z., Chan, C.C., Jin, Y., Gong, T., Zhang, Y., Chen, L.H., Dong, X.: A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer. IEEE Photon. Technol. Lett. 23(13), 920–922 (2011)

    ADS  Article  Google Scholar 

  26. Sharma, M., Konar, S.: Broadband supercontinuum generation in lead silicate photonic crystal fibers employing optical pulses of 50 W peak power. Opt. Commun. 380, 310–319 (2016)

    ADS  Article  Google Scholar 

  27. Sharma, M., Borgohain, N., Konar, S.: Supercontinuum generation in photonic crystal fibers possessing high birefringence and large optical nonlinearity. Phys. Exp. 4, 1–9 (2015)

    Google Scholar 

  28. Vasantha Jayakantha Raja, R., Porsezian, K.: J. Photon. Nanostruct. Fundam. Appl. 5, 171–177 (2007)

  29. Vigneswaran, D., Ayyanar, N., Sharma, M., Sumathi, M., Rajan, M., Porsezian, K.: Salinity sensor using photonic crystal fiber. Sens. Actuators A Phys. 269, 22–28 (2018)

    Article  Google Scholar 

  30. Villatoro, J., Finazzi, V., Minkovich, V.P., Pruneri, V., Badenes, G.: Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing. Appl. Phys. Lett. 91(9), 091109 (2007)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This manuscript has not been published yet and not even under consideration for publication elsewhere. The authors are grateful who have participated in this research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kawsar Ahmed.

Ethics declarations

Conflict of interest

All the authors have read the manuscript and approved this for submission as well as no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Optical Wave and Waveguide Theory and Numerical Modelling, OQTNM 2018.

Guest Edited by Stefan Helfert, Manfred Hammer, Dirk Schulz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paul, B.K., Ahmed, K., Vigneswaran, D. et al. Quasi photonic crystal fiber for chemical sensing purpose in the terahertz regime: design and analysis. Opt Quant Electron 51, 238 (2019). https://doi.org/10.1007/s11082-019-1956-z

Download citation

Keywords

  • Photonic crystal fiber
  • Optical sensor
  • Sensitivity
  • THz regime
  • Q-PCF