Skip to main content
Log in

Optomechanical control of mode conversion in a hybrid semiconductor microcavity containing a quantum dot

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The future of quantum communication systems and quantum networks heavily rely on the ability to fabricate and coherently control the conversion of photons between different modes based on a solid-state plateform. In this work, we propose and theoretically investigate a scheme to optomechanically control coherent mode conversion of optical photons by utilizing two optically coupled hybrid semiconductor microcavities containing a quantum dot (QD). One of the microcavity is pumped by an external laser and the second cavity is driven by light emitted by the QD that is embedded in the interface separating the two microcavities. The semiconductor microcavities can be fabricated using distributed Bragg reflectors and can be made movable. We have demonstrated that photon-mode-conversion efficiency can be coherently manipulated by the optomechanical mode under appropriate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali, S., Bhattacherjee, A.B.: Photon statistics of radiation emitted by two quantum wells embedded in two optically coupled semiconductor microcavities. Optik 172, 588–595 (2018)

    Article  ADS  Google Scholar 

  • Aspelmeyer, M., Meystre, P., Schwab, K.: Quantum optomechanics. Phys. Today 65, 29–35 (2012)

    Article  Google Scholar 

  • Bhattacherjee, A.B., Hasan, M.S.: Controllable optical bistability and Fano line shape in a hybrid optomechanical system assisted by Kerr medium: possibility of all optical switching. J. Mod Opt. 65, 1688–1697 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Bohm, H.R., Gigana, S., Blaser, F., Zeilinger, A., Aspelmeyer, M.: High reflectivity high- micromechanical Bragg mirror. Appl. Phys. Letts. 89, 223101 (2006)

    Article  ADS  Google Scholar 

  • Choy, H.K.H.: Design and fabrication of distributed Bragg reflectors for vertical-cavity surface emitting lasers. M.Sc. thesis, Mc Master University (1996)

  • Dong, C., Fiore, V., Kuzyk, M.C., Wang, H.: Optomechanical dark mode. Science 338, 1609–1613 (2014)

    Article  ADS  Google Scholar 

  • Dong, C., Wand, Y., Wang, H.: Optomechanical interfaces for hybrid quantum networks. Natl. Sci. Rev. 2, 510–519 (2015)

    Article  Google Scholar 

  • Fang, K., Matheny, M.H., Luan, X., Painter, O.: Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics 10, 489–496 (2016)

    Article  ADS  Google Scholar 

  • Gudat, J: Cavity Quantum Electrodynamics with quantum dots in microcavities. Ph.D. thesis, University of Leiden (2012)

  • Hill, J.T., Safavi-Naeini, A.H., Chan, J., Painter, O.: Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012). https://doi.org/10.1038/ncomms2201

    Article  ADS  Google Scholar 

  • Huang, J., Kumar, P.: Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153–2156 (1992)

    Article  ADS  Google Scholar 

  • Khitrova, G., Gibbs, H.M., Kira, M., Koch, S.W., Schere, A.: Vacuum Rabi splitting in semiconductors. Nat. Phys. 2, 81–90 (2006)

    Article  Google Scholar 

  • Kielpinski, D., Corney, J.F., Wiseman, H.M.: Quantum optical waveform conversion. Phys. Rev. Lett. 106, 130501 (2011)

    Article  ADS  Google Scholar 

  • Kimble, H.J.: The quantum internet. Nature (London) 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  • Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2018)

    Article  ADS  Google Scholar 

  • Kwon, Y.D., Armen, M.A., Mabuchi, H.: Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics. Phys. Rev. Letts. 111, 203002 (2013)

    Article  ADS  Google Scholar 

  • Lin, Q., Rosenberg, J., Chang, D., Camacho, R., Eichenfield, M., Vahala, J.K., Painter, O.: Coherent mixing of mechanical excitations in nano-optomechanical structures. Nat. Photonics 4, 236–242 (2010)

    Article  ADS  Google Scholar 

  • Li, J., Yu, R., Ma, J., Wu, Y.: Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity. J. Appl. Phys. 116, 164306 (2014)

    Article  ADS  Google Scholar 

  • Mabuchi, H., Doherty, A.C.: Cavity quantum electrodynamics: coherence in context. Science 298, 1372–1377 (2002)

    Article  ADS  Google Scholar 

  • Mahajan, S., Bhattacherjee, A.B.: Controllable nonlinear effects in a hybrid optomechanical semiconductor microcavity containing a quantum dot and Kerr medium. J. Mod. Opt. 66, 652–664 (2019)

    Article  ADS  Google Scholar 

  • Majumdar, A., Englund, D., Bajcsy, M., Vuckovic, J.: Nonlinear temporal dynamics of a strongly coupled quantum-dot-cavity system. Phys. Rev. A 85, 033802 (2012a)

    Article  ADS  Google Scholar 

  • Majumdar, A., Englund, D., Bajcsy, M., Vuckovic, J.: All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity. IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012b)

    Article  ADS  Google Scholar 

  • McGuinness, H.J., Raymer, M.G., McKinstrie, C.J., Radic, S.: Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett. 105, 093604 (2010)

    Article  ADS  Google Scholar 

  • Milburn, G.J., Woolley, M.J.: An introduction to quantum optomechanics. Acta. Phys. Slovaca 61, 483–601 (2011)

    Article  ADS  Google Scholar 

  • Noguchi, A., Yamazaki, R., Ataka, M., Fujita, H., Tabuchi, Y., Ishikawa, T., Usami, K., Nakamura, Y.: Ground state cooling of a quantum electromechanical system with a silicon nitride membrane in a 3D loop-gap cavity. New J. Phys. 18, 103036 (2016). https://doi.org/10.1088/1367-2630/18/10/103036

    Article  ADS  Google Scholar 

  • Rakher, M.T., Slattery, M.L., Tang, X., Srinivasan, K.: Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nat. Photonics 4, 786–791 (2010)

    Article  ADS  Google Scholar 

  • Rakher, M.T., Davano, M.L., Slattery, M., Tang, X., Srinivasan, K.: Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot. Phys. Rev. Lett. 107, 083602 (2011)

    Article  ADS  Google Scholar 

  • Ritter, S., et al.: An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012)

    Article  ADS  Google Scholar 

  • Shkarin, A.B., Flowers-Jacobs, N.E., Hoch, S.W., Kashkanova, A.D., Deutsch, C., Reichel, J., Harris, J.G.E.: Optically mediated hybridization between two mechanical modes. Phys. Rev. Lett. 112, 013602 (2014)

    Article  ADS  Google Scholar 

  • Spethmann, N., Kohler, J., Schreppler, S., Buchmann, L., Stamper-Kurn, D.M.: Cavity-mediated coupling of mechanical oscillators limited by quantum back-action. Nat. Phys. 12, 27–31 (2016)

    Article  Google Scholar 

  • Srinivasan, K., Painter, O.: Linear and nonlinear optical spectroscopy of a strongly coupled microdisk- quantum dot system. Nature (London) 450, 862–865 (2007)

    Article  ADS  Google Scholar 

  • Stannigel, K., Rabl, P., Sorensen, A.S., Zoller, P., Lukin, M.D.: Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010)

    Article  ADS  Google Scholar 

  • Tang, J., Geng, W., Xu, X.: Quantum interference induced photon blockade in a coupled single quantum dot- cavity system. Sci. Rep. 5, 9252 (2015). https://doi.org/10.1038/srep09252

    Article  ADS  Google Scholar 

  • Tanzilli, S., Tittel, W., Halder, M., Alibart, O., Baldi, P., Gisin, N., Zbinden, H.: A photonic quantum information interface. Nature 437, 116–120 (2005)

    Article  ADS  Google Scholar 

  • Tian, L.: Optoelectromechanical transducer : reversible conversion between microwave and optical photons. Ann. Phys. (Berlin) 527, 1–14 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Tian, L., Wang, H.L.: Optical wavelength conversion of quantum states with optomechanics. Phy. Rev. A 82, 053806 (2010)

    Article  ADS  Google Scholar 

  • Toulouse, J.: Optical nonlinearities in fibers: review, recent examples, and systems applications. J. Lightwave Technol. 23, 3625–3641 (2005)

    Article  ADS  Google Scholar 

  • Vahala, K.J.: Optical microcavities. Nature (London) 424, 839–846 (2003)

    Article  ADS  Google Scholar 

  • Vahala, K.J.: Optical Micro Cavities. World Scientific Publishing, Hackensack (2004)

    Book  Google Scholar 

  • Waks, E., Sridharan, D.: Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter. Phys. Rev. A 82, 043845 (2010)

    Article  ADS  Google Scholar 

  • Wallquist, M., Hammerer, K., Rabl, P., Lukin, M., Zoller, P.: Hybrid quantum devices and quantum engineering. Phys. Scr. 2009, 014001 (2009)

    Article  Google Scholar 

  • Weaver, M.J., Buters, F., Luna, F., Eerkens, H., Heeck, K., de Man, S., Bouwmeester, D.: Coherent optomechanical state transfer between disparate mechanical resonators. Nat. Commun. 8, 824 (2017). https://doi.org/10.1038/s41467-017-00968-9

    Article  ADS  Google Scholar 

  • Yamaguchi, H.: Semicond.GaAs-based micro/nanomechanical resonators. Semicond. Sci. Technol. 32, 103003 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A. B. B acknowledges Birla Institute of Technology and Science , Pilani for the facilities to carry out this research. A. B. B is also thankful to SERB-Department of Science and Technology, New Delhi for the financial support under SERB Project No. : EMR/ 2017/0019870. S. A would like to thank the School of Physical Sciences, JNU for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aranya B. Bhattacherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Bhattacherjee, A.B. Optomechanical control of mode conversion in a hybrid semiconductor microcavity containing a quantum dot. Opt Quant Electron 51, 240 (2019). https://doi.org/10.1007/s11082-019-1955-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1955-0

Keywords

Navigation