Skip to main content

Advertisement

Log in

Design and modelling of the photonic crystal fano structure for all optical switching applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the optical Fano switch based on the 2D slab photonic crystal is analyzed. Switching characteristics are improved by manipulating the Q factors of cavities. Modified device with enhanced Fano resonance has lower energy consumption than other previous optical switches. Results show that, the switching contrast is enhanced while the quality factor has remained in its highest value. Therefore, the typical important trade off between switching contrast and quality factor has vanished in the modified structure. The switching contrast is improved from 7 to 34 db in constant \(\Delta \lambda_{peak - peak}\) of 0.3 nm in the modified structure which leads to decreasing the energy consumption of the device. In the previous devices, the maximum reported contrast is about 20 db for \(\Delta \lambda_{peak - peak}\) of 0.6 nm. A coupled mode theory for analyzing the structure is developed. The results of finite difference time domain numerical simulation are in good agreement with the theoretical coupled mode theory. Results show that the switching contrast of the modified Fano switch is enhanced two times, consequently the loss is suppressed and the bandwidth is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrekson, P.A., Sunnerud, H., Oda, S., Nishitani, T., Yang, J.: Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation. Opt. Express 16(15), 10956–10961 (2008)

    Article  ADS  Google Scholar 

  • Asano, T., Song, B., Akahane, Y., Noda, S.: Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs. IEEE J. Sel. Top. Quantum Electron. 12(6), 1123–1134 (2010)

    Article  ADS  Google Scholar 

  • Bazin, Alexandre, Lenglé, Kevin, Gay, Mathilde, Monnier, Paul, Bramerie, Laurent, Braive, Remy, Beaudoin, Grégoire, Sagnes, Isabelle, Raj, Rama, Raineri, Fabrice: Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells. Appl. Phys. Lett. 104(1), 011102 (2014)

    Article  ADS  Google Scholar 

  • Benisty, H.: Modal analysis of optical guides with two-dimensional photonic band-gap boundaries. J. Appl. Phys. 79(10), 7483–7492 (1996)

    Article  ADS  Google Scholar 

  • Cong, G.W., Akimoto, R., Akita, K., Hasama, T., Ishikawa, H.: Low-saturation-energy-driven ultrafast all-optical switching operation in (CdS/ZnSe)/BeTe intersubband transition. Opt. Express 15(19), 12123–12130 (2007)

    Article  ADS  Google Scholar 

  • Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 24(6), 1866–1878 (1961)

    Article  ADS  Google Scholar 

  • Gopal, A.V., Yoshida, H., Neogi, A., Georgiev, N., Mozume, T.: Intersubband absorption saturation in InGaAs-AlAsSb quantum wells. IEEE J. Quantum Electron. 38(1), 1515–1520 (2002)

    Article  ADS  Google Scholar 

  • Husko, C., De Rossi, A., Combrié, S., Tran, Q.V., Raineri, F., Wong, C.W.: Ultrafast all-optical modulation in GaAs photonic crystal cavities. Appl. Phys. Lett. 94(2), 021111 (2009)

    Article  ADS  Google Scholar 

  • Johnson, S.G., Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Kolodziejski, L.A.: Guided modes in photonic crystal slabs. Phys. Rev. B 60(8), 5751–5758 (1999)

    Article  ADS  Google Scholar 

  • Krauss, T.F., Richard, M., Brand, S.: Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383(6602), 699–702 (1996)

    Article  ADS  Google Scholar 

  • Lee, J.H., Tanemura, T., Takushima, Y., Kikuchi, K.: All-optical 80-Gb/s add-drop multiplexer using fiber-based nonlinear optical loop mirror. IEEE Photon. Technol. Lett. 17(4), 840–842 (2005)

    Article  ADS  Google Scholar 

  • Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.-P.: Microring resonator channel dropping filters. IEEE J. Lightw. Technol. 15(6), 998–1005 (1997)

    Article  ADS  Google Scholar 

  • Mekis, A., Fan, S., Joannopoulos, J.D.: Bound states in photonic crystal waveguides and waveguide bends. Phys. Rev. B 58(8), 4809–4817 (1998)

    Article  ADS  Google Scholar 

  • Miller, D.A.: Device requirements for optical interconnects to silicon chips. Proc. IEEE 97(7), 1166–1185 (2009)

    Article  Google Scholar 

  • Nakamura, S., Ueno, Y., Tajima, K.: Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach–Zehnder-type all-optical switch. Appl. Phys. Lett. 78(25), 3929–3931 (2001)

    Article  ADS  Google Scholar 

  • Nielsen, M.L., Mørk, J., Suzuki, R., Sakaguchi, J., Ueno, Y.: Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on highspeed SOA-based all-optical switches. Opt. Express 14(1), 331–347 (2006)

    Article  ADS  Google Scholar 

  • Nozaki, K., Tanabe, T., Shinya, A., Matsuo, S., Sato, T., Taniyama, H., Notomi, M.: Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photon. 4(7), 477–483 (2010)

    Article  ADS  Google Scholar 

  • Nozaki, K., Shinya, A., Matsuo, S., Notomi, M.: Ultralowenergy all-optical switches based on photonic crystal nanocavities. NTT Techn. Rev. 9(8), 1–6 (2011)

    Google Scholar 

  • Nozaki, K., Shinya, A., Matsuo, S., Sato, T., Kuramochi, E., Notomi, M.: Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. Opt. Express 21(10), 11877–11888 (2013)

    Article  ADS  Google Scholar 

  • Peng, F., Wang, Z., Yuan, G., Guan, L., Peng, Z.: High-sensitivity refractive index sensing based on fano resonances in a photonic crystal cavity-coupled microring resonator. IEEE Photon. J. 10(2), 1–8 (2018)

    Article  Google Scholar 

  • Tajima, K., Nakamura, S., Ueno, Y.: Symmetric Mach-Zehnder-type all-optical switches and ultrafast all-optical signal processing. Electron. Commun. Jpn. (Part II: Electron.) 85(2), 1–7 (2002)

    Article  Google Scholar 

  • Xu, Q., Schmidt, B., Pradhan, S., Lipson, M.: Micrometre-scale silicon electro-optic modulator. Nature 435(7040), 325–327 (2005)

    Article  ADS  Google Scholar 

  • Yamamoto, T., Yoshida, E., Nakazawa, M.: Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals. Electron. Lett. 34(10), 1013–1014 (1998)

    Article  Google Scholar 

  • Yu, Y., Xue, W., Hu, H., Oxenlowe, L., Yvind, K., Mork, J.: All-optical switching improvement using photonic-crystal fano structures. IEEE Photon. J. 8(2), 1–8 (2016)

    Google Scholar 

  • Zhang, Ziyang, Qiu, Min: Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. Opt. Express 12(17), 3988–3995 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Yavari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M.H., Yavari, M.H. Design and modelling of the photonic crystal fano structure for all optical switching applications. Opt Quant Electron 51, 237 (2019). https://doi.org/10.1007/s11082-019-1954-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1954-1

Keywords

Navigation