Skip to main content
Log in

Optoelectronic properties of germanium iodide perovskites AGeI3 (A = K, Rb and Cs): first principles investigations

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the structural, optoelectronic and elastic properties of AGeI3 (A = K, Rb and Cs) using the density functional theory with generalized gradient approximation (GGA) for potential exchange correlation. The modified Becke–Johnson (mBJ-GGA) potential approximation is also used for calculating the optoelectronic properties of the material. The results show that the band structure of the perovskites AGeI3 (have a semiconductor behavior with direct band gap at R–R direction, the gap energy values calculated with mBJ-GGA, for each compound as following: 0.58, 0.63, and 0.71 eV, respectively. The optical properties, such as real and imaginary parts of the dielectric functions, refractive index, reflectivity, conductivity and absorption coefficient are investigated. As results, these compounds are competent candidates photovoltaic application like light harvester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andalibi, S., Rostami, A., Darvish, G., Moravvej-Farshi, M.K.: Band gap engineering of organo metal lead halide perovskite photovoltaic absorber. Opt. Quantum Electron. 48, 258 (2016). https://doi.org/10.1007/s11082-016-0525-y

  • Azahaf, C., Zaari, H., Abbassi, A., Ez-Zahraouy, H., Benyoussef, A.: The investigation of pressure effect on the optical properties, spontaneous polarization and effective mass of BaHfO3: ab initio study. Opt. Quantum Electron. 48, 386 (2016). https://doi.org/10.1007/s11082-016-0652-5

  • Becke, A.D., Johnson, E.R.: A Simple Effective Potential for Exchange. AIP, College Park (2006)

    Book  Google Scholar 

  • Becke, A., Roussel, M.: Exchange holes in inhomogeneous systems: a coordinate-space model. Phys. Rev. A 39, 3761 (1989). https://doi.org/10.1103/PhysRevA.39.3761

    Article  ADS  Google Scholar 

  • Benatmane, S., Beldi, L., Bendaoud, H., Méçabih, S., Abbar, B., Bouhafs, B.: Spin-polarized optical properties of half-metallic binary XBi (X = Ca, Sr and Ba) compounds in zinc blende and wurtzite phases, Indian J. Phys. 93, 1–12 (2018)

    Google Scholar 

  • Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k-An augmented plane wave & local orbital program for calculating crystal properties. Techn. Universitat Wien, Austria (2001)

  • Camargo-Martinez, J., Baquero, R.: Performance of the modified Becke-Johnson potential for semiconductors. Phys. Rev. B 86, 195106 (2012). https://doi.org/10.1103/PhysRevB.86.195106

  • Deschler, F., Price, M., Pathak, S., Klintberg, L.E., Jarausch, D.-D., Higler, R., et al.: High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014)

    Article  Google Scholar 

  • Dufek, P., Blaha, P., Schwarz, K.: Applications of Engel and Vosko’s generalized gradient approximation in solids. Phys. Rev. B 50, 7279–7283 (1994)

    Article  ADS  Google Scholar 

  • Engel, E., Vosko, S.H.: Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Phys. Rev. B 47, 13164–13174 (1993)

    Article  ADS  Google Scholar 

  • Even, J., Pedesseau, L., Jancu, J.M., Katan, C.: DFT and k· p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys. Status Solidi (RRL) Rapid Res. Lett. 8, 31–35 (2014)

    Article  ADS  Google Scholar 

  • Fergus, J.W.: Perovskite oxides for semiconductor-based gas sensors. Sensors Actuators B Chem. 123, 1169–1179 (2007)

    Article  Google Scholar 

  • Fu, H., Bellaiche, L.: Ferroelectricity in barium titanate quantum dots and wires. Phys. Rev. Lett. 91, 257601 (2003). https://doi.org/10.1103/PhysRevLett.91.257601

  • Gutiérrez, G., Menéndez-Proupin, E., Singh, A.K.: Elastic properties of the bcc structure of bismuth at high pressure. J. Appl. Phys. 99, 103504 (2006). https://doi.org/10.1063/1.2195421

    Article  ADS  Google Scholar 

  • Haid, S., Bouadjemi, B., Houari, M., Matougui, M., Lantri, T., Bentata, S., et al.: Investigation of DFT + U effect of Holmium rare-earth on the electronic, magnetic and the half-metallic ferromagnetic properties’ of double perovskite Ba2HoReO6. Solid State Commun. 294, 29–35 (2019)

    Article  ADS  Google Scholar 

  • Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P., Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489 (2014). https://doi.org/10.1038/nphoton.2014.82

    Article  ADS  Google Scholar 

  • He, Y., Galli, G.: Perovskites for solar thermoelectric applications: a first principle study of CH3NH3AI3 (A = Pb and Sn). Chem. Mater. 26, 5394–5400 (2014)

    Article  Google Scholar 

  • Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  • Houari, M., Bouadjemi, B., Abbad, A., Benstaali, W., Haid, S., Lantri, T., et al.: Structural, electronic and optical properties of cubic fluoroelpasolite Cs2NaYF6 by density functional theory. Chin. J. Phys. 56, 1756–1763 (2018)

    Article  Google Scholar 

  • Houari, M., Bouadjemi, B., Haid, S., Matougui, M., Lantri, T., Aziz, Z. et al.: Semiconductor behavior of halide perovskites AGeX3 (A = K, Rb and Cs; X = F, Cl and Br): first-principles calculations, Indian J. Phys. 97, 1–13 (2019)

    Google Scholar 

  • Huang, L.-Y., Lambrecht, W.R.: Vibrational spectra and nonlinear optical coefficients of rhombohedral CsGeX3 halide compounds with X = I, Br, Cl. Phys. Rev. B 94, 115202 (2016). https://doi.org/10.1103/PhysRevB.94.115202

  • Kieslich, G., Sun, S., Cheetham, A.K.: An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6, 3430–3433 (2015)

    Article  Google Scholar 

  • Kocak, B., Ciftci, Y.O., Colakoglu, K., Deligoz, E.: Structural, elastic, thermodynamic and lattice dynamic properties of Pr X (X = Sb, Bi). Int. J. Mater. Res. 104, 99–108 (2013)

    Article  Google Scholar 

  • Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  • Körbel, S., Marques, M.A., Botti, S.: Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. J. Mater. Chem. C 4, 3157–3167 (2016)

    Article  Google Scholar 

  • Krishnamoorthy, T., Ding, H., Yan, C., Leong, W.L., Baikie, T., Zhang, Z., et al.: Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3, 23829–23832 (2015)

    Article  Google Scholar 

  • Luaña, V., Costales, A., Pendás, A.M., Flórez, M., Fernández, V.M.G.: Structural and chemical stability of halide perovskites. Solid State Commun. 104, 47–50 (1997)

    Article  ADS  Google Scholar 

  • Mehl, M.J., Klein, B.M., Papaconstantopoulos, D.A.: First Principles Calculations of Elastic Properties of Metals, vol. 1, pp. 195–210. Wiley, London (1994)

    Google Scholar 

  • Meziani, A., Heciri, D., Belkhir, H.: Structural, electronic, elastic and optical properties of fluoro-perovskite KZnF3. Physica B 406, 3646–3652 (2011)

    Article  ADS  Google Scholar 

  • Moskvin, A., Makhnev, A., Nomerovannaya, L., Loshkareva, N., Balbashov, A.: Interplay of p − d and d − d charge transfer transitions in rare-earth perovskite manganites. Phys. Rev. B 82, 035106 (2010). https://doi.org/10.1103/PhysRevB.82.035106

  • Murnaghan, F.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, 244–247 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  • Murtaza, G., Ahmad, I., Afaq, A.: Shift of indirect to direct bandgap in going from K to Cs in MCaF3 (M = K, Rb, Cs). Solid State Sci. 16, 152–157 (2013)

    Article  ADS  Google Scholar 

  • Naeem, S., Murtaza, G., Khenata, R., Khalid, M.: First principle study of CsSrM3 (M = F, Cl). Physica B Condens. Matter 414, 91–96 (2013)

    Article  ADS  Google Scholar 

  • Nelson, K., Mao, Z., Maeno, Y., Liu, Y.: Odd-parity superconductivity in Sr2RuO4. Science 306, 1151–1154 (2004)

    Article  ADS  Google Scholar 

  • Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., et al.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014)

    Article  Google Scholar 

  • Peiponen, K.-E., Lucarini, V., Vartiainen, E., Saarinen, J.: Kramers–Kronig relations and sum rules of negative refractive index media. Eur. Phys. J. B Condens. Matter Complex Syst. 41, 61–65 (2004)

    Article  Google Scholar 

  • Penn, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)

    Article  ADS  Google Scholar 

  • Perdew, J., Burke, K., Ernzerhof, M.: Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 80, 891 (1998)

    Article  ADS  Google Scholar 

  • Pugh, S.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823–843 (1954)

    Article  Google Scholar 

  • Ranganathan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008). https://doi.org/10.1103/PhysRevLett.101.055504

  • Roknuzzaman, M., Ostrikov, K.K., Wang, H., Du, A., Tesfamichael, T.: Towards lead-free perovskite photovoltaics and optoelectronics by ab initio simulations. Sci. Rep. 7, 14025 (2017). https://doi.org/10.1038/s41598-017-13172-y

  • Rolland, A., Pedesseau, L., Kepenekian, M., Katan, C., Huang, Y., Wang, S., et al.: Computational analysis of hybrid perovskite on silicon 2-T tandem solar cells based on a Si tunnel junction. Opt. Quantum Electron. 50, 21 (2018). https://doi.org/10.1007/s11082-017-1284-0

  • Sahli, B., Bouafia, H., Abidri, B., Bouaza, A., Akriche, A., Hiadsi, S., et al.: Study of hydrostatic pressure effect on structural, mechanical, electronic and optical properties of KMgF3, K 0. 5 Na 0. 5 MgF3 and NaMgF3 cubic fluoro-perovskites via ab initio calculations. Int. J. Mod. Phys. B 30, 1650230 (2016). https://doi.org/10.1142/S0217979216502301

    Article  ADS  Google Scholar 

  • Sajwan, R.K., Tiwari, S., Harshit, T., Singh, A.K.: Recent progress in multicolor tuning of rare earth-doped gadolinium aluminate phosphors GdAlO3. Opt. Quantum Electron. 49, 344 (2017). https://doi.org/10.1007/s11082-017-1158-5

  • Singh, D.: Ground-state properties of lanthanum: treatment of extended-core states. Phys. Rev. B 43, 6388–6392 (1991)

    Article  ADS  Google Scholar 

  • Sjöstedt, E., Nordström, L., Singh, D.: An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114, 15–20 (2000)

    Article  ADS  Google Scholar 

  • Slater, J.C.: Wave functions in a periodic potential. Phys. Rev. 51, 846–851 (1937)

    Article  ADS  Google Scholar 

  • Stoumpos, C.C., Malliakas, C.D., Peters, J.A., Liu, Z., Sebastian, M., Im, J., et al.: Crystal growth of the perovskite semiconductor CsPbBr 3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013)

    Article  Google Scholar 

  • Stoumpos, C.C., Frazer, L., Clark, D.J., Kim, Y.S., Rhim, S.H., Freeman, A.J., et al.: Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015)

    Article  Google Scholar 

  • Sun, J., Wang, H.-T., He, J., Tian, Y.: Ab initio investigations of optical properties of the high-pressure phases of ZnO. Phys. Rev. B 71, 125132 (2005). https://doi.org/10.1103/PhysRevB.71.125132

  • Tang, L.-C., Chang, Y.-C., Huang, J.-Y., Lee, M.-H., Chang, C.-S.: First principles calculations of linear and second-order optical responses in rhombohedrally distorted perovskite ternary halides, CsGeX3 (X = Cl, Br, and I). Jpn. J. Appl. Phys. 48, 112402 (2009). https://doi.org/10.1143/JJAP.48.112402

    Article  ADS  Google Scholar 

  • Tao, S.X., Cao, X., Bobbert, P.A.: Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense. Sci. Rep. 7, 14386 (2017). https://doi.org/10.1038/s41598-017-14435-4

  • Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

  • Tran, F., Blaha, P., Schwarz, K.: Band gap calculations with Becke-Johnson exchange potential. J. Phys. Condens. Matter 19, 196208 (2007). https://doi.org/10.1088/0953-8984/19/19/196208

    ADS  Google Scholar 

  • Tvergaard, V., Hutchinson, J.W.: Microcracking in ceramics induced by thermal expansion or elastic anisotropy. J. Am. Ceram. Soc. 71, 157–166 (1988)

    Article  ADS  Google Scholar 

  • Ubic, R., Subodh, G.: The prediction of lattice constants in orthorhombic perovskites. J. Alloys Compd. 488, 374–379 (2009)

    Article  Google Scholar 

  • Volonakis, G., Sakai, N., Snaith, H.J., Giustino, F.: Oxide analogs of halide perovskites and the new semiconductor Ba2AgIO6. J. Phys. Chem. Lett. 10, 1722–1728 (2019)

    Article  Google Scholar 

  • Wang, L.J., Kuzmich, A., Dogariu, A.: Correction: gain-assisted superluminal light propagation. Nature 411, 277–279 (2001). https://doi.org/10.1038/35018520

    Article  Google Scholar 

  • Wang, K., Li, G., Wang, S., Liu, S., Sun, W., Huang, C., et al.: Dark-field sensors based on organometallic halide perovskite microlasers. Adv. Mater. 30, 1801481 (2018). https://doi.org/10.1002/adma.201801481

    Article  Google Scholar 

  • Whalley, L.D., Frost, J.M., Jung, Y.-K., Walsh, A.: Perspective: theory and simulation of hybrid halide perovskites. J. Chem. Phys. 146, 220901 (2017). https://doi.org/10.1063/1.4984964

    Article  ADS  Google Scholar 

  • Xiao, Z., Yan, Y.: Progress in theoretical study of metal halide perovskite solar cell materials. Adv. Energy Mater. 7, 1701136 (2017). https://doi.org/10.1002/aenm.201701136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bouadjemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houari, M., Bouadjemi, B., Matougui, M. et al. Optoelectronic properties of germanium iodide perovskites AGeI3 (A = K, Rb and Cs): first principles investigations. Opt Quant Electron 51, 234 (2019). https://doi.org/10.1007/s11082-019-1949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1949-y

Keywords

Navigation