Skip to main content
Log in

Dynamic power and chirp measurements of amplified 19 ps pulses in traveling-wave and reflective semiconductor optical amplifiers using a linear pulse characterization technique

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The dynamic chirp and power of amplified pulses in semiconductor optical amplifiers is of importance in the application of these devices as conventional amplifiers and in optical signal processing. Non-linear measurement techniques are appropriate for pulsewidths less than 5 ps but have low sensitivity for wider pulsewidths commonly present in moderate bit rate optical systems. Typical measurements of chirp and power of 20 GHz repetition rate amplified 19 ps pulsewidth pulses in traveling-wave and reflective SOAs are obtained using a linear characterization technique based on small-signal sinusoidal modulation at half the pulse stream repetition rate and post-processing of the resulting optical spectrums. The results show that the amplified pulse dynamic power and chirp can have a complex structure and thereby pulse spectrum, which in turn can influence pulse propagation in optical fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrawal, G.P., Olsson, N.A.: Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron. 25, 2297–2306 (1989)

    Article  ADS  Google Scholar 

  • Connelly, M.J.: Wide-band steady-state numerical model and parameter extraction of a tensile-strained bulk semiconductor optical amplifier. IEEE J. Quantum Electron. 43, 47–56 (2007)

    Article  ADS  Google Scholar 

  • Connelly, M.J.: Reflective semiconductor optical amplifier pulse propagation model. IEEE Phot. Tech. Lett. 24, 95–97 (2012)

    Article  ADS  Google Scholar 

  • Connelly, M.J., Romero-Vivas, J., Meehan, A., Krzczanowicz, L.: Modeling of Mach–Zehnder and electroabsorption modulator pulse generators and extraction of the chirp factor. In: International Conference on Numerical Simulation of Optoelectronic Devices (2015). https://doi.org/10.1109/NUSOD.2015.7292825

  • Debeau, J., Kowalski, B., Boittin, R.: Simple method for the complete characterization of an optical pulse. Opt. Lett. 23, 1784–1786 (1998)

    Article  ADS  Google Scholar 

  • Dorrer, C., Inuk, K.: Complete temporal characterization of short optical pulses by simplified chronocyclic tomography. Opt. Lett. 28, 1481–1483 (2003)

    Article  ADS  Google Scholar 

  • Ji, Y., Li, Y., Wu, J., Wang, H., Lin, J.: Carrier-suppressed 160-GHz pulse-train generation using a dual-parallel Mach–Zehnder modulator. Opt. Eng. (2013). https://doi.org/10.1117/1.OE.52.5.055007

    Article  Google Scholar 

  • Kang, I., Dorrer, C., Zhang, L., Dinu, M., Rasras, M., Buhl, L.L., Cabot, S., Bhardwaj, A., Liu, X., Cappuzzo, M.A., Gomez, L., Wong-Foy, A., Chen, Y.F., Dutta, N.K., Patel, S.S., Neilson, D.T., Giles, C.R., Piccirilli, A., Jaques, J.: Characterization of the dynamical processes in all-optical signal processing using semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron. 14, 758–769 (2008)

    Article  ADS  Google Scholar 

  • Lepetit, L., Chériaux, G., Joffre, M.: Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467–2474 (1995)

    Article  ADS  Google Scholar 

  • Naylor, D.A., Lermer, N., Furniss, I.: Deconvolution of Fabry–Perot spectra. Infrared Phys. (1991). https://doi.org/10.1016/0020-0891(91)90015-8

    Article  Google Scholar 

  • Thomsen, B.C., Roelens, M.A.F., Watts, R.T., Richardson, D.J.: Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications. IEEE Phot. Tech. Lett. 17, 1914–1916 (2005)

    Article  ADS  Google Scholar 

  • Trebino, R., DeLong, K.W., Fittinghoff, D.N., Sweetser, J.N., Krumbugel, M.A., Richman, B.A., Kane, D.J.: Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997)

    Article  ADS  Google Scholar 

  • Walmsley, I.A., Dorrer, C.: Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 1, 308–437 (2009)

    Article  Google Scholar 

  • Wong, V., Walmsley, I.A.: Linear filter analysis of methods for ultrashort pulse shape measurements. J. Opt. Soc. Am. B 12, 1491–1499 (1995)

    Article  ADS  Google Scholar 

  • Wooten, E.L., Kissa, K.M., Yi-Yan, A., Murphy, E.J., Lafaw, D.A., Hallemeier, P.F., Maack, D., Attanasio, D.V., Fritz, D.J., McBrien, G.J., Bossi, D.E.: A review of Lithium Niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum. Electron. 6, 69–82 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science Foundation Ireland Investigator Grant 09/IN.1/I2641.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Connelly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Vivas, J., Krzczanowicz, L., Meehan, A. et al. Dynamic power and chirp measurements of amplified 19 ps pulses in traveling-wave and reflective semiconductor optical amplifiers using a linear pulse characterization technique. Opt Quant Electron 51, 248 (2019). https://doi.org/10.1007/s11082-019-1948-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1948-z

Keywords

Navigation