Skip to main content

Advertisement

Log in

Nanoscale plasmonic detector of wave intensity difference and uni-directional waveguide

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a new nanoscale plasmonic differential detector of wave intensities is proposed. This structure can be useful for calibration applications and for finding out if a wave intensity is high enough to pass a threshold level or not. Next, a nanoscale plasmonic uni-directional waveguide is presented. The distinction of this waveguide with similar cases is that the one-way wave-guiding is provided by adding a properly located controlling source, without employing any non-reciprocal material. This feature can be used in many applications that only uni-directional wave propagation is desirable. Both structures have been designed in metal–insulator–metal structure including cavity resonators. The operations are based on the coupling of the wave from input waveguides to the cavity resonators and decoupling to output waveguides in the cavity resonance wavelengths. The simulation results of performance of the structures, as elements applicable to photonic integrated circuits, have been obtained using the numerical method of the finite difference time domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arju, N., Ma, T., Khanikaev, A., Purtseladze, D., Shvets, G.: Optical realization of double-continuum fano interference and coherent control in plasmonic metasurfaces. Phys. Rev. Lett. 114, 237403 (2015)

  • Balanis, C.A.: Advanced Engineering Electromagnetics. Wiley, New York (1989)

    Google Scholar 

  • Barnes, W., Dereus, A., Ebbesen, T.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  • Boltasseva, A.: Plasmonic components fabrication via nanoimprint. J. Opt. A: Pure Appl. Opt. 11, 114001–114012 (2009)

    Article  ADS  Google Scholar 

  • Christofi, A., Kawaguchi, Y., Alu, A., Khanikaev, A.: Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces. Opt. Lett. 43, 1838–1841 (2018)

    Article  ADS  Google Scholar 

  • Dolatabady, A., Granpayeh, N.: All optical logic gates based on two dimensional plasmonic waveguide with nanodisk resonator. J. Opt. Soc. Korea 16, 432–442 (2012)

    Article  Google Scholar 

  • Dolatabady, A., Granpayeh, N.: L-shaped filter, mode-separator, and power divider, based on plasmonic waveguides with nanocavity resonators. IET Optoelectron. 9, 289–293 (2015)

    Article  Google Scholar 

  • Dolatabady, A., Granpayeh, N.: Plasmonic directional couplers based on multi-slit waveguides. Plasmonics 12, 597–604 (2017a)

    Article  Google Scholar 

  • Dolatabady, A., Granpayeh, N.: All optical logic gates in plasmonic metal–insulator–metal nanowaveguide with slot cavity resonator. J. Nanophoton. 11, 026001 (2017b)

    Article  ADS  Google Scholar 

  • Dolatabady, A., Granpayeh, N., Foroughi Nezhad, V.: A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator. Opt. Commun. 300, 265–268 (2013)

    Article  ADS  Google Scholar 

  • Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  • Heikal, A.M., Hameed, M.F.O, Obayya, S.S.A.: Basic principles of surface plasmon resonance. In: Hameed, M.F.O., Obayya, S. (eds.) Computational Photonic Sensors, pp. 53–72. Springer, Cham (2019)

    Chapter  Google Scholar 

  • Jin, P., Huang, X.G., Tao, J., Lin, X.S., Zhang, Q.: A novel nanometric plasmonic refractive index sensor. IEEE Trans. Nanotechnol. 9, 134–137 (2010)

    Article  ADS  Google Scholar 

  • Keiser, G.: Optical Fiber Communications, 3rd edn. Mc Graw-Hill, New York (2000)

    Google Scholar 

  • Keshavarz, A., Vafapour, Z.: Thermo-optical applications of a novel terahertz semiconductor metamaterial design. J. Opt. Soc. Am. B 36, 35–41 (2019a)

    Article  ADS  Google Scholar 

  • Keshavarz, A., Vafapour, Z.: Water-based terahertz metamaterial for skin cancer detection application. IEEE Sens. J. 13, 1519–1524 (2019b)

    Article  ADS  Google Scholar 

  • Khanikaev, A., Alu, A.: Optical isolators: nonlinear dynamic reciprocity. Nat. Photon. 9, 359–361 (2015)

    Article  ADS  Google Scholar 

  • Khanikaev, A., Wu, C., Shvets, G.: Fano-resonant metamaterials and their applications. Nanophotonics 2, 247–264 (2013)

    Article  ADS  Google Scholar 

  • Lalanne, P., Coudert, S., Duchateau, G., Dilhaire, S., Vynck, K.: Structural slow waves: parallels between photonic crystals and plasmonic waveguides. ACS Photon. 6, 4–17 (2019)

    Article  Google Scholar 

  • Liu, L., Han, Z., He, S.: Novel surface plasmon waveguide for high integration. Opt. Express 13, 6645–6650 (2005)

    Article  ADS  Google Scholar 

  • Lu, H., Liu, X., Mao, D., Wang, L., Gong, Y.: Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt. Express 18, 17922–17927 (2010)

    Article  ADS  Google Scholar 

  • Lu, H., Liu, X., Wang, L., Gong, Y., Mao, D.: Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 19, 2910–2915 (2011)

    Article  ADS  Google Scholar 

  • Maksymov, I.S.: Optical switching and logic gates with hybrid plasmonic-photonic crystal nanobeam cavities. Phys. Lett. A 375, 819–921 (2011)

    Google Scholar 

  • Mansouri-Birjandi, M.A., Tavousi, A., Ghadrdan, M.: Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators. Photon. Nanostruct. Fundam. Appl. 21, 44–51 (2016)

    Article  ADS  Google Scholar 

  • Naik, G.V., Shalaev, V.M., Boltasseva, A.: Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013)

    Article  Google Scholar 

  • Nelson, V.P., Nagel, H.T., Carrol, B.D., Irwin, J.D.: Digital Logic Circuit Analysis and Design. Prentice Hall, Upper Saddle River (1995)

    Google Scholar 

  • Nozhat, N., Granpayeh, N.: All-optical nonlinear plasmonic ring resonator switches. J. Mod. Opt. 61, 1690–1695 (2014)

    Article  ADS  Google Scholar 

  • Orlov, A.A., Zhukovsky, S.V., Iorsh, I.V., Belov, P.A.: Controlling light with plasmonic multilayers. Photon. Nanostruct. Fundam. Appl. 12, 213–230 (2014)

    Article  ADS  Google Scholar 

  • Ptasinski, J., Pang, L., Sun, P.C., Slutsky, B., Fainman, Y.: Differential detection for nanoplasmonic resonance sensor. IEEE Sens. J. 12, 384–388 (2012)

    Article  ADS  Google Scholar 

  • Pu, M., Yao, N., Hu, C., Xin, X., Zhao, Z., Wang, C., Luo, X.: Directional coupler and nonlinear Mach–Zehnder interferometer based on metal–insulator–metal plasmonic waveguide. Opt. Express 18, 21030–21037 (2010)

    Article  ADS  Google Scholar 

  • Rukhlenko, I.D., Premaratne, M., Agraval, G.P.: Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications. Opt. Express 19, 206–217 (2010)

    Article  ADS  Google Scholar 

  • Salvador, R., Martinez, A., Garcia-Meca, C., Ortuno, R., Marti, J.: Analysis of hybrid dielectric plasmonic waveguide. IEEE J. Sel. Top. Quant. Electron. 14, 1496–1501 (2008)

    Article  ADS  Google Scholar 

  • Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House, Boston (2005)

    MATH  Google Scholar 

  • Vafapour, Z.: Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance. J. Opt. Soc. Am. A 35, 417–422 (2018)

    Article  ADS  Google Scholar 

  • Vafapour, Z., Forouzeshfard, M.R.: Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials. Plasmonics 12, 1331–1342 (2017)

    Article  Google Scholar 

  • Vafapour, Z.: Slow light modulator using semiconductor metamaterial. In: Proceedings of SPIE 10535, Integrated Optics: Devices Materials, and Technologies XXII, 105352A, San Francisco, California, USA (2018). https://doi.org/10.1117/12.2292259

  • Wang, G., Lu, H., Liu, X., Mao, Dong, Duan, L.: Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt. Express 19, 3513–3518 (2011)

    Article  ADS  Google Scholar 

  • Wu, C., Khanikaev, A.B., Shvets, G.: Broadband slow light metamaterial based on a double-continuum fano resonance. Phys. Rev. Lett. 106, 107403 (2011)

  • Zhang, L., Tassin, P., Koschny, T., Kurter, C., Anlage, S.M., Soukoulis, C.M.: Large group delay in a microwave metamaterial analog of electromagnetically induced transparency. Appl. Phys. Lett. 97, 241904 (2010)

    Article  ADS  Google Scholar 

  • Zhang, Y., Kuang, Y., Zhang, Z., Tang, Y., Han, J., Wang, R., Cui, J., Hou, Y., Liu, W.: High-sensitivity refractive index sensors based on fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity. Appl. Phys. A (2019). https://doi.org/10.1007/s00339-018-2283-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Dolatabady.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolatabady, A., Granpayeh, N. & Abedini, M. Nanoscale plasmonic detector of wave intensity difference and uni-directional waveguide. Opt Quant Electron 51, 230 (2019). https://doi.org/10.1007/s11082-019-1946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1946-1

Keywords

Navigation