Skip to main content
Log in

Diamagnetic susceptibility and optical properties of a spherical quantum dot: effects of the parabolic and the shifted parabolic potentials

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Centred charge donor related diamagnetic susceptibility and optical properties of a spherical GaAs quantum dot are presented. In particular, effects of intrinsic parabolic and shifted parabolic potentials on these quantities are investigated. This is theoretically achieved by solving the Schrödinger equation within the effective mass approximation. It is observed that the parabolic potential reduces the magnitude of the diamagnetic susceptibility while the shifted parabolic potential increases it. Other findings are that the parabolic potential blue-shifts both the absorption coefficient and the change in refractive index of quantum dots, while the shifted parabolic potential red-shifts these quantities. These features are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ataser, T., Sonmez, N.A., Ozen, Y., Ozdemir, V., Zeybek, O., Ozcelik, S.: Developing of dual junction gainp/gaas solar cell devices: effects of different metal contacts. Opt. Quantum Electron. 50, 277 (2018)

    Article  Google Scholar 

  • Bhadra, J., Sarkar, D.: Field effect transistor fabricated from polyaniline-polyvinyl alcohol nanocomposite. Indian J. Phys. 84(6), 693–697 (2010)

    Article  ADS  Google Scholar 

  • Birotheau, L., Izrael, A., Marzin, J.Y., Azoulay, R., Thiery-Mieg, V., Ladan, F.R.: Optical investigation of the onedimensional confinement effects in narrow gaas/gaalas quantum wires. Appl. Phys. Lett. 61, 3023 (1992)

    Article  ADS  Google Scholar 

  • Burkard, G., Loss, D., DiVincenzo, D.P.: Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070 (1999)

    Article  ADS  Google Scholar 

  • Cecchi, S., Llin, L.F., Etzelstorfer, T., Samarelli, A.: Review of thermoelectric characterization techniques suitable for sige multilayer structures. Eur. Phys. J. B 88, 70 (2015)

    Article  ADS  Google Scholar 

  • Chen, R., Zheng, X., Jiang, T.: Broadband ultrafast nonlinear absorption and ultra-long exciton relaxation time of black phosphorus quantum dots. Opt. Express 25(7), 7507–7519 (2017)

    Article  ADS  Google Scholar 

  • Duque, C.M., Acosta, R.E., Morales, A.L., Mora-Ramos, M.E., Restrepo, R.L., Ojeda, J.H., Kasapoglu, E., Duque, C.A.: Optical coefficients in a semiconductor quantum ring: electric field and donor impurity effects. Opt. Mater. 60, 148–158 (2016)

    Article  ADS  Google Scholar 

  • Farkoush, B.A., Safarpour, G., Zamani, A.: Linear and nonlinear optical absorption coefficients and refractive index changes of a spherical quantum dot placed at the center of a cylindrical nano-wire: Effects of hydrostatic pressure and temperature. Superlattices Microstruct. 59, 66–76 (2013)

    Article  ADS  Google Scholar 

  • Gil-Corrales, A., Morales, A.L., Restrepo, R.L., Mora-Ramos, M.E., Duque, C.A.: Donor-impurity-related optical response and electron raman scattering in gaas cone-like quantum dots. Physica B 507, 76–83 (2017)

    Article  ADS  Google Scholar 

  • Gul Kilic, D., Sakiroglu, S., Sokmen, I.: Impurity-related optical properties of a laser-driven quantum dot. Physica E 102, 50–57 (2018)

    Article  ADS  Google Scholar 

  • Höglund, L., Holtz, P.O., Petterson, H., Asplund, C., Wang, H., Malm, H., Almqvist, S.E., Petrini, E., Andersson, J.Y.: Optical pumping as artificial doping in quantum dots-in-a-well infrared photodetectors. Appl. Phys. Lett. 94, 053503 (2009)

    Article  ADS  Google Scholar 

  • Hortaçsu, M.: Heun functions and their uses in physics. In Mathematical Physics: Proceedings of the 13th Regional Conference, Antalya, Turkey, October 27–31, 2010, pp. 23–39 (2013)

  • Hosseinpour, P., Soltani-Vala, A., Barvestani, J.: Effect of impurity on the absorption of a parabolic quantum dot with rashba spin-orbit interaction. Physica E 80, 48–52 (2016)

    Article  ADS  Google Scholar 

  • Hsieh, C.-Y.: Lower lying states of hydrogenic impurity in a multi-layer quantum dot. Chin. J. Phys. 38(3–I), 478–490 (2000)

    MathSciNet  Google Scholar 

  • Jeice, A.R., Jayam, S.G., Wilson, K.S.J.: Polaronic effects on diamagnetic susceptibility of a hydrogenic donor in nanostructures. Indian J. Phys. 90(7), 805–809 (2016)

    Article  ADS  Google Scholar 

  • Kang, G., Yoo, J., Ahn, J., Kim, K.: Transparent dielectric nanostructures for efficient light management in optoelectronic applications. Nano Today 10, 22–47 (2015)

    Article  Google Scholar 

  • Keshavarz, A., Zamani, N.: Optical properties of spherical quantum dot with position-dependent effective mass. Superlattices Microstruct. 58, 191 (2013)

    Article  ADS  Google Scholar 

  • Koksal, M., Kilicarslan, E., Sari, H., Sokmen, I.: Magnetic-field effect on the diamagnetic susceptibility of hydrogenic impurities in quantum well-wires. Physica B 404, 3850–3854 (2009)

    Article  ADS  Google Scholar 

  • Malkoc, O., Stano, P., Loss, D.: Optimal geometry of lateral gaas and si/sige quantum dots for electrical control of spin qubits. Phys. Rev. B 93, 235413 (2016)

    Article  ADS  Google Scholar 

  • Mandal, G., Ganguly, T.: Applications of nanomaterials in the different fields of photosciences. Indian J. Phys. 85(8), 1229–1245 (2011)

    Article  ADS  Google Scholar 

  • Milivojević, M.: Symmetric spin-orbit interaction in triple quantum dot and minimisation of spin-orbit leakage in cnot gate. J. Phys. Condens. Matter 30, 085302 (2018)

    Article  ADS  Google Scholar 

  • Mmadi, A., Zorkani, I., Rahmani, K., Jorio, A.: Magnetic field effect on the diamagnetic susceptibility of hydrogenic donor in cylindrical quantum dot. Afr. Rev. Phys. 8, 219–226 (2013)

    Google Scholar 

  • Mobini, A., Solaimani, M.: A quantum rings based on multiple quantum wells for 1.2 to 2.8 thz detection. Physica E 101, 162–166 (2018)

    Article  ADS  Google Scholar 

  • Pennelli, G.: Top-down fabrication of silicon nanowire devices for thermoelectric applications: properties and perspectives. Eur. Phys. J. B 88, 121 (2015)

    Article  ADS  Google Scholar 

  • Peter, A.J., Ebenezar, J.: Diamagnetic susceptibility of a confined donor in a quantum dot with different confinements. J. Sci. Res. 1(2), 200–208 (2009)

    Article  Google Scholar 

  • Rahmani, K., Zorkani, I., Jorio, A.: Diamagnetic susceptibility of a confined donor in inhomogeneous quantum dots. Phys. Scr. 83, 035701 (2011). (1–6)

    Article  ADS  Google Scholar 

  • Rishinaramangalam, A.K., Ul Masabih, S.M., Fairchild, M.N., Wright, J.B., Shima, D.M., Balakrishnan, G., Brener, I., Brueck, S.R.J., Feezell, D.F.: Controlled growth of ordered iii-nitride core-shell nanostructure arrays for visible optoelectronic devices. J. Electron Mater. 44(5), 1255–1262 (2015)

    Article  ADS  Google Scholar 

  • Ronveaux, A.: Heun’s Differential Equations. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  • Sakiroglu, S., Kasapoglu, E., Restrepo, R.L., Duque, C.A., Sökmen, I.: Intense laser field-induced nonlinear optical properties of morse quantum well. Phys. Status Solidi 254(4), 1600457 (2017)

    Article  Google Scholar 

  • Tekerek, S., Kudret, A., Alver, U.: Dye-sensitized solar cells fabricated with black raspberry, black carrot and rosella juice. Indian J. Phys. 85(10), 1469–1476 (2011)

    Article  ADS  Google Scholar 

  • Tshipa, M.: The effects of cup-like and hill-like parabolic confining potentials on photoionization cross section of a donor in a spherical quantum dot. Eur. Phys. J. B. 89, 177 (2016)

    Article  ADS  Google Scholar 

  • Yakar, Y., Çakir, B., Özmen, A.: Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum dot with parabolic potential. Opt. Commun. 283, 1795 (2010)

    Article  ADS  Google Scholar 

  • Ying, L., Hong-jing, X., Ben-kun, M., Jia-qiang, L., Jia-lin, Z.: Spectra of hydrogenic donor states in quantum-dot quantum well structures. Chin. Phys. Lett. 16, 680–682 (1999)

    Article  ADS  Google Scholar 

  • Zamani, A., Azargoshasb, T., Niknam, E., Mohammadhosseini, E.: Absorption coefficient and refractive index changes of a lens-shaped quantum dot: Rashba and dresselhaus spin-orbit interactions under external fields. Optik 142, 273–281 (2017)

    Article  ADS  Google Scholar 

  • Zhang, X., Li, H.-Q., Wang, K., Cao, G., Xiao, M., Guo, G.-P.: Qubits based on semiconductor quantum dots. Chin. Phys. B 27(2), 020305 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to express gratitude to Tchakoua Theophile from National Radiation Agency of Cameroon, P. O. Box 33732, Yaounde, Cameroon, for the immense contributions he has made towards the development of this communication, and Z. Szabo, University of Botswana, for fruitful discussions and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moletlanyi Tshipa.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tshipa, M. Diamagnetic susceptibility and optical properties of a spherical quantum dot: effects of the parabolic and the shifted parabolic potentials. Opt Quant Electron 51, 225 (2019). https://doi.org/10.1007/s11082-019-1942-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1942-5

Keywords

Navigation