Advertisement

Energy efficient photonic millimeter-wave generation using cascaded polarization modulators

  • Gazi Mahamud HasanEmail author
  • Mehedi Hasan
  • Hongpeng Shang
  • DeGui Sun
  • Karin Hinzer
  • Peng Liu
  • Trevor Hall
Article
  • 48 Downloads
Part of the following topical collections:
  1. Numerical Simulation of Optoelectronic Devices 2018

Abstract

A filter-less millimeter-wave generation scheme consisting of four polarization modulators in series, each followed by a polarizer is proposed to achieve optoelectronic frequency octupling. The cascade of polarization modulator and polarizer provides an intensity modulator whose biasing condition can be set by the polarizer angle and polarization state of the input light to each polarization modulator. A theoretical analysis of the architecture is performed using a transfer function method and validated by industry-standard software simulation tools. The circuit shows high potential in achieving desired performance with lower input RF power when compared to the another configuration based on a generalized Mach–Zehnder interferometer structure. Although the operating range in terms of applied RF drive becomes narrow, low RF input operation can be achieved by this circuit. The effect of imbalances in the key circuit parameters is also investigated in terms of electrical side harmonic suppression ratio.

Keywords

Optical millimeter-wave generation Frequency octupling Polarization modulator Polarizer 

Notes

Acknowledgements

Mehedi Hasan acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC) for their support through the Vanier Canada Graduate Scholarship program. Karin Hinzer is grateful to D & T Photonics and MITACS for their support through the MITACS accelerate award number IT07662. Trevor Hall is grateful to the University of Ottawa for their support of his University Research Chair.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. United States Department of Commerce, National Bureau of Standards, Washington D.C. (1964)zbMATHGoogle Scholar
  2. Baskaran, M., Prabakaran, R.: Optical millimeter wave signal generation with frequency 16-tupling using cascaded MZMs and no optical filtering for radio over fiber system. J. Eur. Opt. Soc. Rapid Publ. (2018).  https://doi.org/10.1186/s41476-018-0080-1 CrossRefGoogle Scholar
  3. Chen, Y., Aijun Wen, A., Shang, L.: Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach–Zehnder modulators. Opt. Commun. 283, 4933–4941 (2010)ADSCrossRefGoogle Scholar
  4. Gao, Y., Wen, A., Li, N., Wu, X., Zhang, H.: Microwave generation with photonic frequency octupling using a DPMZM in a Sagnac loop. J. Mod. Opt. 62, 1291–1296 (2015)ADSCrossRefGoogle Scholar
  5. Hasan, M., Hall, T.J.: A photonic frequency octo-tupler with reduced RF drive power and extended spurious sideband suppression. Opt. Laser Technol. 81, 115–121 (2016)ADSCrossRefGoogle Scholar
  6. Hasan, M., Guemri, R., Maldonado-basilio, R., Lucarz, F., Tocnaye, J.-L.B., Hall, T.J.: Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation. Opt. Lett. 39, 6950–6953 (2014)ADSCrossRefGoogle Scholar
  7. Hasan, M., Maldonado-Basilio, R., Hall, T.J.: Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation. Opt. Lett. 40, 2501–2504 (2015)ADSCrossRefGoogle Scholar
  8. Hasan, M., Hinzer, K., Hall, T.J.: Cascade circuit architecture for RF-photonic frequency multiplication with minimum RF energy. J. Mod. Opt. (2018).  https://doi.org/10.1080/09500340.2018.1519607 CrossRefGoogle Scholar
  9. Jung, T., Shen, J.-L., Tong, D.T.K., Murthy, S., Wu, M.C., Tanbun-Ek, T., Wang, W., Lodenkamper, R., Davis, R., Lembo, L.J., Brock, J.C.: CW injection locking of a mode-locked semiconductor laser as a local oscillator comb for channelizing broad-band RF signals. IEEE Trans. Microw. Theory Tech. 47, 1225–1232 (1999)ADSCrossRefGoogle Scholar
  10. Li, W., Zhu, N.H., Wang, L.X.: Harmonic RF carrier generation and broadband data up-conversion using stimulated Brillouin scattering. Opt. Commun. 284, 3437–3439 (2011)ADSCrossRefGoogle Scholar
  11. Lin, C.-T., Shih, P.-T., Chen, J., Xue, W.-Q., Peng, P.-C., Chi, S.: Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering. IEEE Photonics Technol. Lett. 20, 1027–1029 (2008)ADSCrossRefGoogle Scholar
  12. Lin, C.-T., Shih, P.-T., Jiang, W., Chen, J.J., Peng, P., Chi, S.: A continuously tunable and filterless optical millimeter-wave generation via frequency octupling. Opt. Express 17, 19749–19756 (2009)ADSCrossRefGoogle Scholar
  13. Ma, J., Xin, X., Yu, J., Yu, C., Wang, K., Huang, H., Rao, L.: Optical millimeter wave generated by octupling the frequency of the local oscillator. J. Opt. Netw. 7, 837–845 (2008)CrossRefGoogle Scholar
  14. Maldonado-basilio, R., Hasan, M., Guemri, R., Lucarz, F., Hall, T.J.: Generalized Mach–Zehnder interferometer architectures for radio frequency translation and multiplication: suppression of unwanted harmonics by design. Opt. Commun. 354, 22–127 (2015)CrossRefGoogle Scholar
  15. O’Reilly, J.J., Lane, P.M., Heidemann, R., Hofstetter, R.: Optical generation of very narrow linewidth millimeter wave signals. Electron. Lett. 28, 2309–2311 (1992)ADSCrossRefGoogle Scholar
  16. Porzi, C., Serafino, G., Sans, M., Falconi, F., Sorianello, V., Pinna, S., Mitchell, J.E., Romagnoli, M., Bogoni, A., Ghelfi, P.: Photonic integrated microwave phase shifter up to the mm-wave band with fast response time in silicon-on-insulator technology. J. Lightw. Technol. 36, 4494–4500 (2018)ADSCrossRefGoogle Scholar
  17. Qin, Y., Sun, J., Du, M., Liao, J.: Simplified optical millimeter-wave generation configuration based on frequency octupling. Opt. Commun. 315, 280–285 (2014)ADSCrossRefGoogle Scholar
  18. Shang, L., Wen, A., Li, B., Wang, T., Chen, Y., Li, M.: A filterless optical millimeter-wave generation based on frequency octupling. Optik 123, 1183–1186 (2012)ADSCrossRefGoogle Scholar
  19. Urick, V.J., Mondich, M.J., Sunderman, C.E., Kozak, D.A., Goetz, P.G., Rabinovich, W.S., Pruessner, M.W., Mahon, R., Williams, K.J.: Microwave phase shifting using coherent photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 22, 353–360 (2016)ADSCrossRefGoogle Scholar
  20. Yang, Y., Ma, J., Zhang, R., Zhang, J.: Generation of optical millimeter wave using two cascaded polarization modulators based on frequency octupling without filtering. Fiber Integr. Opt. 34, 230–242 (2015)ADSCrossRefGoogle Scholar
  21. Zhang, W., Wen, A., Gao, Y., Shang, S., Zheng, H., He, H.: Filterless frequency-octupling mm-wave generation by cascading Sagnac loop and DPMZM. Opt. Laser Technol. 97, 229–233 (2017)ADSCrossRefGoogle Scholar
  22. Zhu, Z., Zhao, S., Li, X., Huang, A., Qu, K., Lin, T.: Photonic generation of frequency-octupled and frequency-quadrupled microwave signals using a dual-parallel polarization modulator. Opt. Quantum Electron. (2016).  https://doi.org/10.1007/s11082-016-0671-2 CrossRefGoogle Scholar
  23. Zhu, S., Li, M., Wang, X., Zhu, N.H., Li, W.: 1 × N hybrid radio frequency photonic splitter based on a dual-polarization dual-parallel Mach Zehnder modulator. Opt. Commun. 431, 10–13 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Photonic Technology Laboratory, Centre for Research in PhotonicsUniversity of OttawaOttawaCanada
  2. 2.School of Opto-electronic EngineeringChangchun University of Science and TechnologyChangchunChina

Personalised recommendations