Skip to main content
Log in

Realization of all-optical plasmonic MIM split square ring resonator switch

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, a configuration of nano plasmonic switch is proposed and investigated. The structure is comprised of the combination of split square ring and straight waveguides. Simulations are done based on Finite-Difference-Time Domain method. The structure is based on metal-insulator-metal configuration. Split square ring and straight waveguides are consisted of air, which are situated in a silver background. The proposed switch can confine light to sub-wavelength dimensions (on the order of nano meter); therefore it can be used in highly integrated optical circuits. The split square ring structure can operate both directly or reversely based on the split position. The transmitted powers in different cases of split square switch are acceptable and higher than 0.6. Therefore, the proposed switch is an appropriate candidate for highly integrated optical communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bahador, M., et al.: A circuit model for analysis of metal–insulator–metal plasmonic complementary split-ring resonators. J. Light. Technol. 32, 2659–2665 (2014)

    Article  ADS  Google Scholar 

  • Cai, W., et al.: Elements for plasmonic nanocircuits with three-dimensional slot waveguides. Adv. Mater. 22, 5120–5124 (2010)

    Article  ADS  Google Scholar 

  • Chen, J., et al.: Tunable resonances in the plasmonic split-ring resonator. IEEE Photonics J. 6, 1–6 (2014)

    Google Scholar 

  • Chen, J., et al.: High-quality temperature sensor based on the plasmonic resonant absorber. Plasmonics 14, 1–5 (2018)

    Google Scholar 

  • Choo, H., et al.: Nanofocusing in a metalinsulator- metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photon. 6, 838–844 (2012)

    Article  ADS  Google Scholar 

  • Eftekharinia, B., et al.: Design of a slit-groove coupler for unidirectional excitation of the guided surface plasmon polaritons through a plasmonic slot waveguide. Plasmonics 12, 131–138 (2017)

    Article  Google Scholar 

  • Eshaghian, A., et al.: Transmission enhancement of sharply bent nanoplasmonic slot waveguides. J. Opt. Soc. Am. B 31, 458–463 (2014)

    Article  ADS  Google Scholar 

  • Farmani, A., et al.: Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattice Microstruct. 112, 404–414 (2017)

    Article  ADS  Google Scholar 

  • Farmani, A., et al.: Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos–Hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018)

    Article  ADS  Google Scholar 

  • Foroutana, S., et al.: All-optical switching in metal nanoparticles plasmonic waveguide using EIT phenomenon. Optik 132, 291–298 (2017)

    Article  ADS  Google Scholar 

  • Ghadrdan, M., et al.: Design and implementation of optical switches based on nonlinear plasmonic ring resonators: circular, square and octagon. Photonics Nanostruct. Fundam. Appl. 29, 15–21 (2018)

    Article  ADS  Google Scholar 

  • Giannini, V., et al.: Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888–3912 (2011)

    Article  Google Scholar 

  • Gramotnev, D.K., et al.: Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  • Halpern, R., et al.: Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. ACS Nano 7, 1755–1762 (2013)

    Article  Google Scholar 

  • Han, Z., et al.: Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technol. Lett. 19, 91–93 (2007)

    Article  ADS  Google Scholar 

  • Janipour, M., et al.: A novel adjustable plasmonic filter realization by split mode ring resonators. JEMAA 5, 405–414 (2013)

    Article  Google Scholar 

  • Lehr, D., et al.: Plasmonic properties of aluminum nanorings generated by double patterning. Opt. Lett. 37, 157–159 (2012)

    Article  ADS  Google Scholar 

  • Liu, D.: High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation. Opt. Express 17, 2906–2917 (2009)

    Article  ADS  Google Scholar 

  • Luo, X., et al.: Plasmonic filter using metal-insulator-metal waveguide with phase shifts and its transmission characteristics. Plasmonics 9, 887–892 (2014)

    Article  Google Scholar 

  • Maier, S.A.: Plasmonics Fundamentals and Applications. Springer, Bath (2007)

    Book  Google Scholar 

  • Mei, X., et al.: A sub-wavelength electro-optic switch based on plasmonic T-shaped waveguide. Plasmonics 6, 613–618 (2011)

    Article  Google Scholar 

  • Nurmohammadi, T., et al.: Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator. Opt. Commun. 410, 142–147 (2018)

    Article  ADS  Google Scholar 

  • Pandesh, S., et al.: The sub-wavelength plasmonic nano-antenna based on cross structure. Optik 127, 3770–3774 (2016)

    Article  ADS  Google Scholar 

  • Rafiee, E., et al.: Coupling coefficient increment and free spectral range decrement by proper design of microring resonator parameters. Opt. Eng. 53, 123108 (2014). https://doi.org/10.1117/1.OE.53.12.123108

    Article  ADS  Google Scholar 

  • Rafiee, E., et al.: Investigating the effects of structural parameters on the optical characteristics of add-drop filters. Optik 127, 1690–1694 (2016)

    Article  ADS  Google Scholar 

  • Rafiee, E., et al.: Design and simulation of a novel nano-plasmonic split-ring resonator filter. J. Electromagn. Wave 32, 1925–1938 (2018)

    Article  Google Scholar 

  • Shahamat, Y., et al.: Designing ultra-compact high efficiency electro-optical plasmonic switches by using of nanocavity reflectors. Opt. Commun. 410, 25–29 (2018)

    Article  ADS  Google Scholar 

  • Vlădescu, E., et al.: Reconfigurable plasmonic logic gates. Plasmonics 13, 1–7 (2018)

    Article  Google Scholar 

  • Wang, T.B., et al.: The transmission characteristics of surface plasmon polaritons in ring resonator. Opt. Express 17, 24096–24101 (2009)

    Article  ADS  Google Scholar 

  • Zarrabi, F.B., et al.: Cross-slot nano-antenna with graphene coat for bio-sensing application. Opt. Commun. 371, 34–39 (2016)

    Article  ADS  Google Scholar 

  • Zarrabi, F.B., et al.: Investigated the Fano resonance in the nano ring arrangement. Optik 138, 80–86 (2017)

    Article  ADS  Google Scholar 

  • Zentgraf, T., et al.: Babinet’s principle for optical frequency metamaterials and nanoantennas. Phys. Rev. B Condens. Matter Mater. Phys. 76, 033407-1–033407-4 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzin Emami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negahdari, R., Rafiee, E. & Emami, F. Realization of all-optical plasmonic MIM split square ring resonator switch. Opt Quant Electron 51, 235 (2019). https://doi.org/10.1007/s11082-019-1924-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1924-7

Keywords

Navigation