Skip to main content
Log in

Numerical simulation and analysis of femtosecond pulse evolution in liquid-core photonic crystal fiber based on adaptive step-size methods

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The adaptive step-size methods including conservation quantity error method (CQEM) and local error method (LEM) are described and used to investigate the femtosecond pulse evolution in liquid-core photonic crystal fibers. The efficiency and accuracy of the numerical results obtained from CQEM and LEM in frequency domain (FD) and time domain (TD) are compared and discussed under the fixed numerical parameters respectively. The numerical results represent that LEM has the higher accuracy due to the integration of nonlinear operator that is more efficient than CQEM. The femtosecond pulse evolution in liquid-core photonic crystal fiber is described and analyzed using LEM. Moreover, the influences of the peak power of pulse and length of liquid-core photonic crystal fibers on the supercontinuum generation are also obtained based on LEM-FD. This study is helpful optimizing the numerical process in ultra-short pulse evolution based on adaptive step-size methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrawal, G.: Nonlinear Fiber Optics, 4th edn. Academic, San Diego (2007)

    MATH  Google Scholar 

  • Balac, S., Fernandez, A.: Mathematical analysis of adaptive step-size techniques when solving the nonlinear Schrödinger equation for simulating light-wave propagation in optical fibers. Opt. Commun. 329, 1–9 (2014)

    Article  ADS  Google Scholar 

  • Balac, S., Mahé, F.: Embedded Runge–Kutta scheme for step-size control in the interaction picture method. Comput. Phys. Commun. 184, 1211–1219 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  • Balac, S., Mahé, F.: An Embedded Split-Step method for solving the nonlinear Schrödinger equation in optics. J. Comput. Phys. 280, 295–305 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  • Cassataro, M., Novoa, D., Günendi, M., Edavalath, N., Frosz, M., Travers, J., Russell, P.: Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF. Opt. Express 25(7), 7637–7644 (2017)

    Article  ADS  Google Scholar 

  • Champert, P., Couderc, V., Leproux, P., Février, S., Tombelaine, V., Labonté, L., Roy, P., Froehly, C., Nérin, P.: White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system. Opt. Express 12(19), 4366–4371 (2004)

    Article  ADS  Google Scholar 

  • Drexler, W.: Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 9(1), 47–74 (2004)

    Article  ADS  Google Scholar 

  • Dudley, J., Taylor, R.: Ten years of nonlinear optics in photonic crystal fibre. Nat. Photonics 3(2), 85–90 (2009)

    Article  ADS  Google Scholar 

  • François, P.: Nonlinear propagation of ultrashort pulses in optical fibers: total field formulation in the frequency domain. J. Opt. Soc. Am. B 8(2), 276–293 (1991)

    Article  ADS  Google Scholar 

  • Heidt, A.: Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers. J. Lightwave Technol. 27(18), 3984–3991 (2009)

    Article  ADS  Google Scholar 

  • Hooper, L., Mosley, P., Muir, A., Wadsworth, W., Knight, J.: Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt. Express 19(6), 4902–4907 (2011)

    Article  ADS  Google Scholar 

  • Huang, C., Liao, M., Bi, W., Li, X., Hu, L., Zhang, L., Wang, L., Qin, G., Xue, T., Chen, D., Gao, W.: Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion. Photonics Res. 6(6), 601–608 (2018)

    Article  Google Scholar 

  • Hult, J.: A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers. J. Lightwave Technol. 25(12), 3770–3775 (2007)

    Article  ADS  Google Scholar 

  • Jones, D., Diddams, S., Ranka, J., Stentz, A., Windeler, R., Hall, J., Cundiff, S.: Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000)

    Article  ADS  Google Scholar 

  • Karim, M., Rahman, B., Agrawal, G.: Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide. Opt. Express 23(5), 6903–6914 (2015)

    Article  ADS  Google Scholar 

  • Kolesik, M., Katona, G., Moloney, J., Wright, E.: Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation. Phys. Rev. Lett. 91(4), 043905 (2003)

    Article  ADS  Google Scholar 

  • Lin, Q., Agrawal, G.: Raman response function for silica fibers. Opt. Lett. 31(21), 3086–3088 (2006)

    Article  ADS  Google Scholar 

  • Qi, X., Chen, S., Li, Z., Liu, T., Ou, Y., Wang, N., Hou, J.: High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm. Opt. Lett. 43(5), 1019–1022 (2018)

    Article  ADS  Google Scholar 

  • Raei, R., Heidari, M., Saghaei, H.: Supercontinuum generation in organic liquid–liquid core-cladding photonic crystal fiber in visible and near-infrared regions. J. Opt. Soc. Am. B 35(2), 323–330 (2018)

    Article  ADS  Google Scholar 

  • Rieznik, A., Heidt, A., König, P., Bettachini, V., Grosz, D.: Optimum integration procedures for supercontinuum simulation. IEEE Photonics J. 4(2), 552–560 (2012)

    Article  ADS  Google Scholar 

  • Russell, P.: Photonic crystal fibers. Science 299(5605), 358–362 (2003)

    Article  ADS  Google Scholar 

  • Singh, N., Xin, M., Vermeulen, D., Shtyrkova, K., Li, N., Callahan, P., Magden, E., Ruocco, A., Fahrenkopf, N., Baiocco, C., Kuo, B., Radic, S., Ippen, E., Kärtner, F., Watts, M.: Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm. Light Sci. Appl. 7, 17131 (2018)

    Article  Google Scholar 

  • Sinkin, O., Holzlohner, R., Zweck, J., Menyuk, C.: Optimization of the split-step Fourier method in modeling optical-fiber communications systems. J. Lightwave Technol. 21(1), 61–68 (2003)

    Article  ADS  Google Scholar 

  • Wen, J., Liu, H., Huang, N., Sun, Q., Zhao, W.: Influence of the initial chirp on the supercontinuum generation in silicon-on-insulator waveguide. Appl. Phys. B 104(4), 867–871 (2011)

    Article  ADS  Google Scholar 

  • Wen, J., Ma, C., Fan, W., Fu, H.: Spectral–temporal description of dispersive wave emission and soliton trapping in micro-nano silicon-on-insulator waveguides. Opt. Laser Technol. 71, 50–54 (2015)

    Article  ADS  Google Scholar 

  • Zhang, R., Teipel, J., Giessen, H.: Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Opt. Express 14(15), 6800–6812 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61505160, the Youth Science and Technology New Star Project of Shaanxi Province under Grant No. 2018KJXX-042 and the Natural Science Basic Research Program of Shaanxi (Program No. 2019JM-084 and No. 2016JQ6051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Duan, L., Ma, C. et al. Numerical simulation and analysis of femtosecond pulse evolution in liquid-core photonic crystal fiber based on adaptive step-size methods. Opt Quant Electron 51, 184 (2019). https://doi.org/10.1007/s11082-019-1906-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1906-9

Keywords

Navigation