Skip to main content
Log in

The method of transition boundary for the solution of diffraction problems

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A new method, which enables one to solve some diffraction problems, is put forth. The technique is based on a relation between the diffracted and scattered geometric optics waves at the transition boundaries. The concept of initial waves is also used instead of the incident field. The general algorithm of the method is outlined and applied to the diffraction problems of waves by perfect electric conductor half-screen, resistive half-plane and impedance sheet junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahluwalia, D.S., Lewis, R.M., Boersma, J.: Uniform asymptotic theory of diffraction by a plane screen. SIAM J. Appl. Math. 16, 783–807 (1968)

    Article  MathSciNet  Google Scholar 

  • Ahluwalia, D.S.: Uniform asymptotic theory of diffraction by the edge of a three-dimensional body. SIAM J. Appl. Math. 18, 287–301 (1970)

    Article  MathSciNet  Google Scholar 

  • Balanis, C.A.: Advanced Engineering Electromagnetics. Wiley, New Jersey (2012)

    Google Scholar 

  • Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  • Buyukaksoy, A., Uzgoren, G.: High-frequency scattering from the impedance discontinuity on a cylindrically curved surface. IEEE Trans. Antennas Propag. 35, 234–236 (1987)

    Article  ADS  Google Scholar 

  • Clemmow, P.C.: A method for the exact solution of a class of two-dimensional diffraction problems. Proc. R. Soc. Lond. A 205, 286–308 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  • Copson, E.T.: On an integral equation arising in the theory of diffraction. Q. J. Math. 17, 19–34 (1946)

    Article  ADS  MathSciNet  Google Scholar 

  • Carslaw, H.S.: Diffraction of waves by a wedge of any angle. Proc. Lond. Math. Soc. s2–18, 291–306 (1920)

    Article  MathSciNet  Google Scholar 

  • Fu, Z., Chen, W., Wen, P., Zheng, C.: Singular boundary method for wave propagation analysis in periodic structures. J. Sound Vib. 425, 170–188 (2018)

    Article  ADS  Google Scholar 

  • Fu, Z.-J., Yang, L.-W., Zhu, H.-Q., Xu, W.-Z.: A semi-analytical collocation Trefftz scheme for solving multi-term time fractional diffusion-wave equations. Eng. Anal. Bound. Elements 98, 137–146 (2019)

    Article  MathSciNet  Google Scholar 

  • Gu, Y., Fan, C.-M., Xu, R.-P.: Localized method of fundamental solutions for large-scale modeling of two-dimensional elasticity problems. Appl. Math. Lett. 93, 8–14 (2019a)

    Article  MathSciNet  Google Scholar 

  • Gu, Y., Hua, Q., Zhang, C., He, X.: The generalized finite difference method for long-time transient heat conduction in 3D anisotropic composite materials. Appl. Math. Model. 71, 316–330 (2019b)

    Article  MathSciNet  Google Scholar 

  • Hurd, R.A.: The Wiener–Hopf–Hilbert method for diffraction problems. Can. J. Phys. 54, 775–780 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  • Hurd, R.A., Przezdziecki, S.: Diffraction by a half-plane with different face impedances—a re-examination. Can. J. Phys. 59, 1337–1347 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  • Keller, J.B.: Geometrical theory of diffraction. J. Opt. Soc. Am. 52, 116–130 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  • Kouyoumjian, R.G., Pathak, P.H.: A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 62, 1448–1461 (1974)

    Article  ADS  Google Scholar 

  • Kyurkchan, A.G., Manenkov, S.A.: A hybrid approach to solving the problem of diffraction by plane screens. Acoust. Phys. 61, 272–280 (2015)

    Article  ADS  Google Scholar 

  • Levine, H., Schwinger, J.: On the radiation of sound from an unflanged circular pipe. Phys. Rev. 73, 383–406 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  • Lewis, R.M., Boersma, J.: Uniform asymptotic theory of edge diffraction. J. Math. Phys. 10, 2291–2305 (1969)

    Article  ADS  Google Scholar 

  • Liu, C.-S.: A multiple/scale/direction polynomial Trefftz method for solving the BHCP in high-dimensional arbitrary simply-connected domains. Int. J. Heat Mass Transf. 92, 970–978 (2016)

    Article  Google Scholar 

  • Lüneburg, E., Hurd, R.A.: On the diffraction problem of a half plane with different face impedances. Can. J. Phys. 62, 853–860 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Malyuzhinets, G.D.: Developments in our concepts of diffraction phenomena (on the 130th anniversary of the death of Thomas Young). Sov. Phys. Usp. 2, 749–758 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  • Malyuzhinets, G.D.: Das Sommerfeldsche Integral und die Lösung von Beugungsaufgaben in Winkelgebieten. Ann. Phys. (Leipzig) 461, 107–112 (1960)

    Article  ADS  Google Scholar 

  • Medgyesi-Mitschang, L., Wang, D.-S.: Hybrid solutions for large-impedance coated bodies of revolution. IEEE Trans. Antennas Propag. 34, 1319–1329 (1986)

    Article  ADS  Google Scholar 

  • Pfeiffer, C., Grbic, A.: Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013)

  • Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  ADS  Google Scholar 

  • Senior, T.B.A.: Diffraction by a semi-infinite metallic sheet. Proc. R. Soc. Lond. A 213, 436–458 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  • Senior, T.B.A.: Half plane edge diffraction. Radio Sci. 10, 645–650 (1975)

    Article  ADS  Google Scholar 

  • Senior, T.B.A.: Diffraction by a resistive half plane. Electromagn. 11, 183–192 (1991)

    Article  Google Scholar 

  • Senior, T.B.A., Volakis, J.L.: Approximate Boundary Conditions in Electromagnetics. IEE, London (1995)

    Book  Google Scholar 

  • Sommerfeld, A.: Mathematische Theorie der Diffraction. Math. Ann. 47, 317–374 (1896)

    Article  MathSciNet  Google Scholar 

  • Tang, Z., Fu, Z., Zheng, D., Huang, J.: Singular boundary method to simulate scattering of SH wave by the canyon topography. Adv. Appl. Math. Mech. 10, 912–924 (2018)

    Article  MathSciNet  Google Scholar 

  • Umul, Y.Z.: Modified theory of physical optics. Opt. Express 12, 4959–4972 (2004)

    Article  ADS  Google Scholar 

  • Umul, Y.Z.: Modified theory of physical optics approach to wedge diffraction problems. Opt. Express 13, 212–224 (2005)

    ADS  Google Scholar 

  • Umul, Y.Z.: Diffraction of evanescent plane waves by a resistive half-plane. J. Opt. Soc. Am. A 24, 3226–3232 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • Umul, Y.Z.: Diffraction of waves by an impedance half-plane. Opt. Commun. 298, 13–17 (2013)

    Article  ADS  Google Scholar 

  • Umul, Y.Z.: Diffraction of waves by a resistive half-plane. Opt. Commun. 323, 6–12 (2014)

    Article  ADS  Google Scholar 

  • Umul, Y.Z.: Scattering theory of waves by a perfectly conducting half-screen between two different media. Microw. Opt. Technol. Lett. 57, 1928–1933 (2015a)

    Article  Google Scholar 

  • Umul, Y.Z.: Scattering by a conductive half-screen between isorefractive media. Appl. Opt. 54, 10309–10313 (2015b)

    Article  ADS  Google Scholar 

  • Umul, Y.Z.: Three dimensional modified theory of physical optics. Optik Int. J. Light Electron Opt. 127, 819–824 (2016a)

    Article  Google Scholar 

  • Umul, Y.Z.: Diffraction of cylindrical waves by a perfectly conducting half-screen: a modified theory of physical optics solution. Microw. Opt. Technol. Lett. 58, 1996–2001 (2016b)

    Article  Google Scholar 

  • Umul, Y.Z.: Diffraction of line source field by a resistive half-plane between isorefractive media. Opt. Quantum Electron. 49, 23 (2017a)

  • Umul, Y.Z.: Wave diffraction by a reflectionless half-plane. Appl. Opt. 56, 9293–9300 (2017b)

    Article  ADS  Google Scholar 

  • Umul, Y.Z.: Edge diffraction in an anomalously reflecting half-plane. Opt. Quantum Electron. 50, 334 (2018a)

  • Umul, Y.Z.: Scattering of waves by a half-screen between isorefractive media. Optik Int. J. Light Electron Opt. 156, 803–810 (2018b)

    Article  Google Scholar 

  • Umul, Y.Z.: Diffraction of electromagnetic waves by a wedge with perfectly absorbing and impedance faces. Optik 174, 416–424 (2018c)

    Article  ADS  Google Scholar 

  • Umul, Y.Z.: Scattering by a resistive half-plane between two dissimilar media. Optik Int. J. Light Electron Opt. 181, 314–319 (2019)

    Article  Google Scholar 

  • Xi, Q., Fu, Z.-J., Rabczuk, T.: An efficient boundary collocation scheme for transient thermal analysis in large-size-ratio functionally graded materials under heat source load. Comput. Mech. (2019). https://doi.org/10.1007/s00466-019-01701-7

    Article  Google Scholar 

  • Zhang, A., Gu, Y., Hua, Q., Chen, W., Zhang, C.: A regularized singular boundary method for inverse Cauchy problem in three-dimensional elastostatics. Adv. Appl. Math. Mech. 10, 1459–1477 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Ziya Umul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umul, Y.Z. The method of transition boundary for the solution of diffraction problems. Opt Quant Electron 51, 181 (2019). https://doi.org/10.1007/s11082-019-1896-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1896-7

Keywords

Navigation