Skip to main content
Log in

Ultra-short and broadband polarization splitter based on PCF and metal surface plasmons resonance

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An ultra-short and broadband polarization splitter based on PCF and metal surface plasmons resonance is proposed by designing a new structure and filling gold wire into certain air holes. The introducing of gold wire aims to couple with the basic modes. Then high birefringence is obtained to improve the splitter’s performances including length, bandwidth and maximal extinction ratio. The numerical results demonstrate that the splitter can be the shortest length of 100 μm (to our knowledge) and the broad bandwidth is 470 nm simultaneously. And when the splitter’s length is set as 104 μm, the widest bandwidth reaches the maximum 575 nm (to our knowledge) which covers almost all the E, S, C, L, and U communication band. In addition, the structure is relatively simple, so it is easy to fabricate using available methods. These properties will help designing splitter in the optical communication and sensing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beltrán-Mejía, F., Chesini, G., Silvestre, E., George, A.K., Knight, J.C., Cordeiro, C.M.: Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes. Opt. Lett. 35, 544–546 (2010)

    Article  ADS  Google Scholar 

  • Birks, T., Knight, J., Russell, P.: Endlessly single mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  • Chao, D., Jing, X.L., Li, S.G., Wu, J.J., Wang, Q.B.: A compact and low-loss polarization splitter based on dual-core photonic crystal fiber. Opt. Quant. Electron. 50(1–10), 255 (2018)

    Google Scholar 

  • Florous, N., Saitoh, K., Koshiba, M.: A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics. Opt. Express 13, 7365–7373 (2005)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.A.: Polarization splitter based on soft glass nematic liquid crystal photonic crystal fiber. IEEE Photon. J. 1, 265–276 (2009)

    Article  ADS  Google Scholar 

  • Issa, N.A., van Eijkelenborg, M.A., Fellew, M., Cox, F., Henry, G., Large, M.C.J.: Fabrication and study of microstructured optical fibers with elliptical holes. Opt. Lett. 29, 1336–1338 (2004)

    Article  ADS  Google Scholar 

  • Jiang, H., Wang, E., Zhang, J., Hu, L., Mao, Q., Li, Q., Xie, K.: Polarization splitter based on dual-core photonic crystal fiber. Opt. Express 22, 30461–30466 (2014)

    Article  ADS  Google Scholar 

  • Knight, J.C., Russell, P.S.J.: Photonic crystal fibers: new ways to guide light. Science 296, 276–277 (2002)

    Article  Google Scholar 

  • Knight, J.C., Birks, T.A., Cregan, R.F., Russell, P.S.J., Sandro, J.P.: Large mode area photonic crystal fiber. Electron. Lett. 34, 1347–1348 (1998)

    Article  Google Scholar 

  • Li, J.H., Wang, J.Y., Wang, R., Liu, Y.: A novel polarization splitter based on dual-core hybrid photonic crystal fibers. Opt. Laser Technol. 43, 795–800 (2011)

    Article  ADS  Google Scholar 

  • Li, X.Y., Xu, Z.L., Ling, W.W., Liu, P.: Design of highly nonlinear photonic crystal fibers with attended chromatic dispersion. Appl. Opt. 53, 6682–6687 (2014)

    Article  ADS  Google Scholar 

  • Liu, Q., Li, S.-G., Fan, Z., Zhang, W., Zi, J., Li, H.: Numerical analysis of high extinction ratio photonic crystal fiber polarization splitter based on ZnTe glass. Opt. Fiber Technol. 21, 193–197 (2015)

    Article  ADS  Google Scholar 

  • Liu, Q., Li, S.-G., Wang, X.Y., Shi, M.: Theoretical simulation of a polarization splitter based on dual-core soft glass PCF with micron-scale gold wire. Chin. Phys. B. 25(1–8), 124210 (2016)

  • Lu, S., Li, W., Guo, H., Lu, M.: Analysis of birefringent and dispersive properties of photonic crystal fibers. Appl. Opt. 50, 5798–5802 (2011)

    Article  ADS  Google Scholar 

  • Malitson, I.H.: Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1209 (1965)

    Article  ADS  Google Scholar 

  • Peng, G., Tjugiarto, T., Chu, P.: Polarisation beam splitting using twin-elliptic-core optical fibers. Electron. Lett. 26, 682–683 (1990)

    Article  Google Scholar 

  • Podoliak, N., Horak, P.: Dual-core optical fiber as beam splitter with arbitrary, tunable polarization-dependent transfer function. Opt. Commun. 35, 4040–4046 (2017)

    Google Scholar 

  • Rajeswari, D., Sivanantha Raja, A., Selvendran, S.: Design and analysis of polarization splitter based on dual-core photonic crystal fiber. Optik 144, 15–21 (2017)

    Article  ADS  Google Scholar 

  • Reeves, W.H., Knight, J.C., Russell, P.S.J., Roberts, P.J.: Demonstration of ultra-attended dispersion in photonic crystal fibers. Opt. Express 10, 609–613 (2002)

    Article  ADS  Google Scholar 

  • Rosa, L., Poli, F., Foroni, M., Cucinotta, A., Selleri, S.: Polarization splitter based on a square-lattice photonic crystal fiber. Opt. Lett. 31, 441–443 (2006)

    Article  ADS  Google Scholar 

  • Saitoh, K., Sato, Y., Koshiba, M.: Coupling characteristics of dual-core photonic crystal fiber couplers. Opt. Express 11, 3188–3195 (2003)

    Article  ADS  Google Scholar 

  • Saitoh, K., Sato, Y., Koshiba, M.: Polarization splitter in three-core photonic crystal fibers”. Opt. Express 12, 3940–3946 (2004)

    Article  ADS  Google Scholar 

  • Sun, B., Chen, M.-Y., Zhou, J., Zhang, Y.-K.: Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire. Plasmonics 8, 1253–1258 (2013)

    Article  Google Scholar 

  • Suzuki, K., Kubota, H., Kawanishi, S., Tanaka, M., Fujita, M.: Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Opt. Express 9, 676–680 (2001)

    Article  ADS  Google Scholar 

  • Tian, F., Yuan, L., Dai, Q., et al.: Fabrication technology of embedded multi-elliptical-cores hollow fiber. Sensor Lett. 10, 1391–1394 (2012)

    Article  Google Scholar 

  • Vial, A., Grimault, A., Macłas, D., Barchiesi, D., Chapelle, M.: Improved nalytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 71(8), 085416 (2005)

    Article  ADS  Google Scholar 

  • Xu, Z., Li, X., Ling, W., Liu, P., Zhang, Z.: Design of short polarization splitter based on dual-core photonic crystal fiber with ultra-high extinction ratio. Opt. Common. 354, 314–320 (2015)

    Article  ADS  Google Scholar 

  • Younis, B.M., Heikal, A.M., Hameed, M.F.O., Obayya, S.S.A.: Highly wavelength-selective asymmetric dual-core liquid photonic crystal fiber polarization splitter. Opt. Soc. B. 35, 1020–1029 (2018)

    Article  ADS  Google Scholar 

  • Zhao, T., Lou, S.: Ultra-broadband polarization splitter based on three-core photonic crystal fiber with a modulation core. Appl. Opt. 55, 6428–6434 (2016)

    Article  ADS  Google Scholar 

Download references

Funding

The National Science Foundation of China (Grant Nos. 61405172 and 61640408) and the Natural Science Foundation of Hebei Province, China (Grant No. F2018203346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Hua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, XT., Hua, L., Xiong, Q. et al. Ultra-short and broadband polarization splitter based on PCF and metal surface plasmons resonance. Opt Quant Electron 51, 162 (2019). https://doi.org/10.1007/s11082-019-1884-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1884-y

Keywords

Navigation