Skip to main content
Log in

Twin-core sunflower-type photonic quasicrystal fibers incorporated gold, silver, and copper microwire: an ultrashort and broad bandwidth polarization splitter

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Polarization splitters are beneficial in the field of passive optical devices which are principally used in the coherent optical communication systems. An ideal polarization splitter must possess an efficient coupling with significant optical bandwidth. Hence, we proposed a novel metal-filled polarization splitter based on twin-core sunflower-type photonic quasicrystal fiber (PQF). The characteristics of the proposed splitter such as coupling length, extinction ratio, and available optical bandwidth were investigated by using the commercially available software, COMSOL Multiphysics. These aforementioned characteristics were determined by optimizing the geometrical parameters of proposed PQF—first by using gold-filled PQF (AuPQF). With optimized geometrical parameters, the splitter achieved an ultra-short coupling length of 132 µm and an ultra-broad bandwidth of 301 nm (wavelength range 1.36–1.68 µm) with an extinction ratio below than − 20 dB which comprised E + S+C + L+U band. Secondly, a comparative study to use silver- and copper-filled PQF (AgPQF and CuPQF) was explored. Both AgPQF and CuPQF retained a short length with adequate bandwidth and a significant extinction ratio below than − 20 dB. The AgPQF has a coupling length of 137 µm with a bandwidth of 136 nm which operated at 1.44 µm wavelength, while CuPQF with 134 µm lengths with a bandwidth of 149 nm and operated at 1.50 µm wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adikan, F.R.M., Sandoghchi, S.R., Yi, C.W., Simpson, R.E., Mahdi, M.A., Webb, A.S., et al.: Direct UV written optical waveguides in flexible glass flat fiber chips. IEEE J. Sel. Top. Quantum Electron. 18, 1534–1539 (2012)

    Article  ADS  Google Scholar 

  • Ahmad, R., Komanec, M., Zvanovec, S.: Circular lattice photonic crystal fiber for mid-IR supercontinuum generation. IEEE Photonics Technol. Lett. 28, 2736–2739 (2016)

    Article  ADS  Google Scholar 

  • Ando, R.F., Tuniz, A., Kobelke, J., Schmidt, M.A.: Analysis of nanogap-induced spectral blue-shifts of plasmons on fiber-integrated gold, silver and copper nanowires. Opt. Mater. Express 7, 1486–1495 (2017)

    Article  ADS  Google Scholar 

  • Azman, M.F., Mahdiraji, G.A., Wong, W.R., Aoni, R.A., Mahamd Adikan, F.R.: Design and fabrication of copper-filled photonic crystal fiber based polarization filters. Appl. Opt. 58, 2068–2075 (2019)

    Article  ADS  Google Scholar 

  • Becker, M., Werner, M., Fitzau, O., Esser, D., Kobelke, J., Lorenz, A., et al.: Laser-drilled free-form silica fiber preforms for microstructured optical fibers. Opt. Fiber Technol. 19, 482–485 (2013)

    Article  ADS  Google Scholar 

  • Birks, T.A., Knight, J.C., Russell, P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  • Bise, R.T., Trevor, D.: Solgel-derived microstructured fibers: fabrication and characterization. In: Optical Fiber Communication Conference, p. OWL6 (2005)

  • Cai, W., Liu, E., Feng, B., Liu, H., Wang, Z., Xiao, W., et al.: Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes. Opt. Int. J. Light Electron Opt. 127, 4438–4442 (2016a)

    Article  Google Scholar 

  • Cai, W., Liu, E., Feng, B., Xiao, W., Liu, H., Wang, Z., et al.: Dodecagonal photonic quasi-crystal fiber with high birefringence. JOSA A 33, 2108–2114 (2016b)

    Article  ADS  Google Scholar 

  • Chan, Y.S., Chan, C.T., Liu, Z.Y.: Photonic band gaps in two dimensional photonic quasicrystals. Phys. Rev. Lett. 80, 956–959 (1998)

    Article  ADS  Google Scholar 

  • Chen, H., Li, S., An, G., Li, J., Fan, Z., Han, Y.: Polarization splitter based on d-shaped dual-core photonic crystal fibers with gold film. Plasmonics 10, 57–61 (2015)

    Article  Google Scholar 

  • Fan, Z., Li, S., Liu, Q., Chen, H., Wang, X.: Plasmonic broadband polarization splitter based on dual-core photonic crystal fiber with elliptical metallic nanowires. Plasmonics 11, 1565–1572 (2016)

    Article  Google Scholar 

  • Florous, N., Saitoh, K., Koshiba, M.: A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics. Opt. Express 13, 7365–7373 (2005)

    Article  ADS  Google Scholar 

  • Hou, J., Bird, D., George, A., Maier, S., Kuhlmey, B.T., Knight, J.C.: Metallic mode confinement in microstructured fibres. Opt. Express 16, 5983–5990 (2008)

    Article  ADS  Google Scholar 

  • Holmes, C., Adikan, F.R., Webb, A.S., Gates, J.C., Gawith, C.B., Sahu, J.K., et al.: Evanescent field sensing in novel flat fiber. In: Conference on Lasers and Electro-Optics, pp. CMJJ3–CMJJ3 (2008)

  • Jiang, H., Wang, E., Zhang, J., Hu, L., Mao, Q., Li, Q., et al.: Polarization splitter based on dual-core photonic crystal fiber. Opt. Express 22, 30461–30466 (2014)

    Article  ADS  Google Scholar 

  • Jiang, L., Zheng, Y., Hou, L., Zheng, K., Peng, J., Zhao, X.: An ultrabraoadband polarization splitter based on square-lattice dual-core photonic crystal fiber with a gold wire. Opt. Commun. 351, 50–56 (2015)

    Article  ADS  Google Scholar 

  • Khaleque, A., Hattori, H.T.: Polarizer based upon a plasmonic resonant thin layer on a squeezed photonic crystal fiber. Appl. Opt. 54, 2543–2549 (2015)

    Article  ADS  Google Scholar 

  • Khaleque, A., Mironov, E.G., Hattori, H.T.: Analysis of the properties of a dual-core plasmonic photonic crystal fiber polarization splitter. Appl. Phys. B 121, 523–532 (2015)

    Article  ADS  Google Scholar 

  • Kim, S., Kee, C.-S.: Dispersion properties of dual-core photonic-quasicrystal fiber. Opt. Express 17, 15885–15890 (2009)

    Article  ADS  Google Scholar 

  • Kim, S., Kee, C.-S., Lee, J.: Novel optical properties of six-fold symmetric photonic quasicrystal fibers. Opt. Express 15, 13221–13226 (2007)

    Article  ADS  Google Scholar 

  • Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)

    Article  ADS  Google Scholar 

  • Kuroiwa, Y., Sugimoto, N., Ochiai, K., Ohara, S., Fukasawa, Y., Ito, S., et al.: Fusion spliceable and high efficient Bi2O3-based EDF for short-length and broadband application pumped at 1480 nm. In: Optical Fiber Communication Conference and International Conference on Quantum Information, Anaheim, California, p. TuI5 (2001)

  • Lee, H.W., Schmidt, M.A., Russell, R.F., Joly, N.Y., Tyagi, H.K., Uebel, P., et al.: Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt. Express 19, 12180–12189 (2011)

    Article  ADS  Google Scholar 

  • Li, P., Zhao, J.: Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers. Opt. Express 21, 5232–5238 (2013)

    Article  ADS  Google Scholar 

  • Liu, Q., Li, S.-G., Fan, Z.-K., Zhang, W., Li, H., Zi, J.-C., et al.: Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber. Opt. Commun. 334, 46–50 (2015)

    Article  ADS  Google Scholar 

  • Liu, H., Xiao, W., Cai, W., Liu, E., Feng, B., Wang, Z., et al.: Photonic quasi-crystal fiber with high birefringence. Opt. Eng. 55, 036101 (2016)

    Article  ADS  Google Scholar 

  • Lu, W., Lou, S., Wang, X., Wang, L., Feng, R.: Ultrabroadband polarization splitter based on three-core photonic crystal fibers. Appl. Opt. 52, 449–455 (2013)

    Article  ADS  Google Scholar 

  • Miliou, A.N., Srivastava, R., Ramaswamy, R.V.: A 1.3 μm directional coupler polarization splitter by ion exchange. J. Lightwave Technol. 11, 220–225 (1993)

    Article  ADS  Google Scholar 

  • Miyazaki, M., Mizutani, M., Shimoyama, H., Kurokawa, M., Okawa, Y.: The low-loss two-fiber mechanical splice for fiber optic cable. In: 40th Conference Proceedings on Electronic Components and Technology, pp. 869–872 (1990)

  • Reeves, W.H., Knight, J.C., Russell, P.S.J., Roberts, P.J.: Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Express 10, 609–613 (2002)

    Article  ADS  Google Scholar 

  • Romero-Vivas, J., Chigrin, D.N., Lavrinenko, A.V., Torres, C.M.S.: Resonant add-drop filter based on a photonic quasicrystal. Opt. Express 13, 826–835 (2005)

    Article  ADS  Google Scholar 

  • Saitoh, K., Sato, Y., Koshiba, M.: Coupling characteristics of dual-core photonic crystal fiber couplers. Opt. Express 11, 3188–3195 (2003)

    Article  ADS  Google Scholar 

  • Sun, B., Chen, M.-Y., Zhou, J., Zhang, Y.-K.: Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire. Plasmonics 8, 1253–1258 (2013)

    Article  Google Scholar 

  • Sun, B., Chen, M.-Y., Zhang, Y.-K., Zhou, J.: Polarization-dependent coupling characteristics of metal-wire filled dual-core photonic crystal fiber. Opt. Quantum Electron. 47, 441–451 (2015)

    Article  Google Scholar 

  • Tatian, B.: Fitting refractive-index data with the Sellmeier dispersion formula. Appl. Opt. 23, 4477–4485 (1984)

    Article  ADS  Google Scholar 

  • Tuniz, A., Kaltenecker, K.J., Fischer, B.M., Walther, M., Fleming, S.C., Argyros, A., et al.: Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances. Nat. Commun. 4, 2706 (2013)

    Article  ADS  Google Scholar 

  • Vial, A., Laroche, T., Dridi, M., Le Cunff, L.C.: A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method. Appl. Phys. A 103, 849–853 (2011)

    Article  ADS  Google Scholar 

  • Wu, C.W., Wu, T.-L., Chang, H.-C.: A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters. IEEE Photonics Technol. Lett. 7, 786–788 (1995)

    Article  ADS  Google Scholar 

  • Xu, Q., Zhao, Y., Xia, H., Lin, S., Zhang, Y.: Ultrashort polarization splitter based on dual-core photonic crystal fibers with gold wire. Opt. Eng. 57, 046104 (2018)

    ADS  Google Scholar 

  • Yajima, T., Yamamoto, J., Ishii, F., Hirooka, T., Yoshida, M., Nakazawa, M.: Low-loss photonic crystal fiber fabricated by a slurry casting method. Opt. Express 21, 30500–30506 (2013)

    Article  ADS  Google Scholar 

  • Yan, B., Wang, A., Liu, E., Tan, W., Xie, J., Ge, R., et al.: Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber. J. Phys. D Appl. Phys. 51, 155105 (2018)

    Article  ADS  Google Scholar 

  • Zhang, S., Yu, X., Zhang, Y., Shum, P., Zhang, Y., Xia, L., et al.: Theoretical study of dual-core photonic crystal fibers with metal wire. IEEE Photon. J. 4, 1178–1187 (2012a)

    Article  ADS  Google Scholar 

  • Zhang, S., Yu, X., Zhang, Y., Shum, P., Zhang, Y., Xia, L., et al.: Theoretical study of dual-core photonic crystal fibers with metal wire. IEEE Photonics J. 4, 1178–1187 (2012b)

    Article  ADS  Google Scholar 

  • Zhao, T., Lou, S., Su, W., Wang, X.: Design of an As2Se3-based photonic quasi-crystal fiber with highly nonlinear and dual zero-dispersion wavelengths. J. Mod. Opt. 63, 139–145 (2016)

    Article  ADS  Google Scholar 

  • Zoorob, M., Charlton, M., Parker, G., Baumberg, J., Netti, M.: Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404, 740–743 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Fahmi Azman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azman, M.F., Wong, W.R., Mhd. Abd. Cader, M.H. et al. Twin-core sunflower-type photonic quasicrystal fibers incorporated gold, silver, and copper microwire: an ultrashort and broad bandwidth polarization splitter. Opt Quant Electron 51, 164 (2019). https://doi.org/10.1007/s11082-019-1880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1880-2

Keywords

Navigation