Skip to main content
Log in

High resolution for confocal fluorescence microscopy via extending zero-region of super-oscillation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Superoscillation is the phenomenon that is observed when a wave oscillates locally faster than its highest Fourier component. Although previous reports have been shown that the superoscillation is highly attractive for imaging, however, the small zero-region area of the superoscillation increases the remarkable effect of the outsidelobes. In this work, we introduce a method using a binary phase mask with radial polarization to extend the zero-region of the superoscillation for high numerical aperture objectives. We successfully design a binary phase mask combining with a radial polarization to obtain a big zero-region of the superoscillation. Evaluation methods rely on point spread function and simulation images are presented. The results demonstrate that our proposed method is very effective for suppressing the outsidelobes. In addition, we show that our technique becomes more effective by adding an amplitude mask.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurement. Phys. Rev. A 41(1), 11–20 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  • Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1998)

    Article  ADS  Google Scholar 

  • Berry, M.V., Popescu, S.: Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A. 39, 6965 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Betzig, E., Patterson, G.H., Sougart, R., et al.: Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006)

    Article  ADS  Google Scholar 

  • Classen, A., Zanthier, J.V., Scully, M.O., Agarwal, G.S.: Superresolution via structured illumination quantum correlation microscopy. Optica 4(6), 480 (2017)

    Article  Google Scholar 

  • Dong, X.H., Wong, A.M.H., Kim, M., Eleftheriades, G.V.: Superresolution far-field imaging of complex objects using reduced superoscillating ripples. Optica 4(9), 1126–1133 (2017)

    Article  Google Scholar 

  • Ferreira, P.J.S.G., Kempf, A.: Superoscillations: faster than Nyquist rate. IEEE Trans. Signal Process. 54, 3732–3740 (2006)

    Article  ADS  Google Scholar 

  • Gao, P., Prunsche, B., Zhou, L., Nienhaus, K., Nienhaus, G.U.: Background suppression in fluorescence nanoscopy with stimulated emission double depletion. Nat. Photon. 11, 163–169 (2017)

    Article  ADS  Google Scholar 

  • Gustafsson, M.G.L.: Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. PNAS 102(37), 13081–13086 (2005)

    Article  ADS  Google Scholar 

  • Hell, S.W., Wichmann, J.: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)

    Article  ADS  Google Scholar 

  • Hess, S.T., Giriajan, Y.P.K., Mason, M.D.: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91(11), 4258–4272 (2006)

    Article  ADS  Google Scholar 

  • Huang, F.M., Zheludev, N.I.: Super-resolution without evanescent waves. Nano Lett. 9, 1249–1254 (2009)

    Article  ADS  Google Scholar 

  • Huang, B., Wang, W., Bates, M., Zhuang, X.: Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008)

    Article  ADS  Google Scholar 

  • Korobcheyvskaya, K., Peres, C., Li, Z., Antipov, A., Sheppard, C.J.R., Diaspro, A., Bianchini, P.: Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement. Sci. Rep. 6, 25816 (2016)

    Article  ADS  Google Scholar 

  • Kosmeier, S., Mazilu, M., Baumgartl, J., Dholakia, K.: Enhanced two-point resolution using optical eigenmode optimized pupil functions. J. Opt. 13, 105707 (2011)

    Article  ADS  Google Scholar 

  • Kozawa, Y., Matsunaga, D., Sato, S.: Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica 5(2), 86–92 (2018)

    Article  Google Scholar 

  • Kuang, C., Li, S., Liu, W., Hao, X., Gu, Z., Wang, Y., Ge, J., Li, H., Liu, X.: Breaking the diffraction barrier using fluorescence emission difference miscroscopy. Sci. Rep. 3, 1441–1446 (2013)

    Article  ADS  Google Scholar 

  • Le, V., Kuang, C., Liu, X.: Extended depth-of field imaging by both radially symmetrical conjugating phase masks with spatial frequency post-processing. Opt. Commun. 411, 80–87 (2018a)

    Article  ADS  Google Scholar 

  • Le, V., Wang, X., Kuang, C., Liu, X.: Background suppression in confocal scanning fluorescence microscopy with superoscillations. Opt. Commun. 426, 541–546 (2018b)

    Article  ADS  Google Scholar 

  • Le, V., Wang, X., Kuang, C., Liu, X.: Resolution enhancement of confocal scanning microscopy using low-intensity imaging part of point spread function. Opt. Eng. 57(5), 053106-1 (2018c)

    Article  ADS  Google Scholar 

  • Richards, B., Wolf, E.: Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system. Proc. R. Soc. A 253, 358–379 (1959)

    ADS  MATH  Google Scholar 

  • Rogers, E.T.F., Lindberg, J., Roy, T., Savo, S., Chad, J.E., Dennis, M.R., Zheludev, N.I.: A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012)

    Article  ADS  Google Scholar 

  • Rogers, E.T.F., Savo, S., Lindberg, J., Roy, T., Dennis, M.R., Zheludev, N.I.: Super-oscillatory optical needle. Appl. Phys. Lett. 102, 031108 (2013)

    Article  ADS  Google Scholar 

  • Roy, T., Rogers, E.T.F., Yuan, G., Zheludev, N.I.: Point spread function of the optical needle super-oscillatory lens. Appl. Phys. Lett. 104, 231109 (2014)

    Article  ADS  Google Scholar 

  • Rust, M.J., Bates, M., Zhuang, X.: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006)

    Article  Google Scholar 

  • Segawa, S., Kozawa, Y., Sato, S.: Resolution enhancement of confocal microscopy by subtraction method with vector beams. Opt. Lett. 39(11), 3118–3121 (2014)

    Article  ADS  Google Scholar 

  • Wan, C., et al.: Three-dimensional visible-light capsule enclosing perfect supersized darkness via antiresolution. Laser Photon. Rev. 5, 743–749 (2014)

    Article  ADS  Google Scholar 

  • Wang, H.F., Gan, F.X.: High focal depth with pure phase apodizer. Appl. Opt. 40, 5658–5662 (2001)

    Article  ADS  Google Scholar 

  • Wang, H.F., Chen, Z.Y., Gan, F.X.: Phase-shifting apodizers for increasing focal depth. Appl. Opt. 41, 5263–5266 (2002)

    Article  ADS  Google Scholar 

  • Wang, H.F., Shi, L.P., Yuan, G.Q., Miao, X.S., Tan, W.L., Chong, T.C.: Subwavelength and super-resolution nondiffraction beam. Appl. Phys. Lett. 89, 171102 (2006)

    Article  ADS  Google Scholar 

  • Wang, H.F., Shi, L., Lukyanchuk, B., Sheppard, C.J.R., Chong, T.C.: Creation of a needle of longitudinal polarized light in vacuum using binary optics. Nat. Photon. 2, 501–505 (2008)

    Article  Google Scholar 

  • Wang, H.F., Sheppard, C.J.R., Koustuban, R., Ho, S.T., Vienne, G.: Fighting against diffraction: apodizer and near field diffraction structures. Laser Photon. Rev. 6, 354–392 (2012)

    Article  ADS  Google Scholar 

  • Wang, H., et al.: Creation of an anti-imaging system using binary optics. Sci. Rep. 6, 33064 (2014)

    Article  ADS  Google Scholar 

  • Wong, M.H., Eleftheriades, G.V.: Temporal pulse compression beyond the Fourier transform limit. IEEE Trans. Microw. Theory Tech. 59, 2173–2179 (2011)

    Article  ADS  Google Scholar 

  • Wong, M.H., Eleftheriades, G.V.: An optical super-microscope for far-field, real-time imaging beyond the diffraction limit. Sci. Rep. 3, 1715 (2013)

    Article  ADS  Google Scholar 

  • Yin, J.P., Gao, W.J., Wang, H.F., Long, Q., Wang, Y.Z.: Generation of dark hollow beams and the applications in laser cooling of atoms and all optical-type Bose-Einstein condensation. Chin. Phys. B 11, 1157 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number (103.03-2018.08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vannhu Le.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, V. High resolution for confocal fluorescence microscopy via extending zero-region of super-oscillation. Opt Quant Electron 51, 136 (2019). https://doi.org/10.1007/s11082-019-1859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1859-z

Keywords

Navigation