Electroluminescence from n-ZnO microdisks/p-GaN heterostructure

Abstract

The light emitting diode structure based on p-GaN film/n-ZnO microdisks quasiarray heterojunction was fabricated. It is shown that the epitaxial quality of p-GaN films upon growth from the vapor phase can lead to growth of the hexagonal microdisk ZnO rather than the vertical nanorods. The density of the microdisks changed across the substrate surface. ZnO hexagonal microdisks are characterized by the average height of about 5 μm with diameters ranging from 25 μm up to 60 μm. The turn-on voltage of the heterojunction of ZnO/GaN (disks/film) is around 5 V. The diode-ideality factor was estimated to be of around 30. The large values of the ideality factors indicate a high density of trap states and also may be connected with the quality of the contacts to the pn junction. The electroluminescence (EL) spectrum acquired from the p-GaN film/n-ZnO microdisks junction exhibited the bands with maxima at 366, 394 and 495 nm. On the basis of the data of X-ray diffraction, electrical and optical studies these peaks were associated with GaN near-band-edge (NBE) emission, ZnO NBE emission, and emission from the defect levels in ZnO, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adam, R.E., Alnoor, H., Elhag, S., Nur, O., Willander, M.: Zinc oxide nanostructures and its nano-compounds for efficient visible light photo-catalytic processes. Proc. SPIE. 10105, 101050X (2017). https://doi.org/10.1117/12.2254872

  2. Alnoor, H., Pozina, G., Khranovskyy, V., Liu, X., Iandolo, D., Willander, M., Nur, O.: Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes. J. Appl. Phys. 119, 165702 (2016)

  3. Alnoor, H., Pozina, G., Willander, M., Nur, O.: Seed layer synthesis effect on the concentration of interface defects and emission spectra of ZnO nanorods/p-GaN light-emitting diode. Phys. Status Solidi (a) 214, 1600333 (2017). https://doi.org/10.1002/pssa.201600333

  4. Alvi, N.H., Hasan, K., Nur, O., Willander, M.: The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res. Lett. 6, 130 (2011a)

  5. Alvi, N.H., Usman, S.M., Hussain, S., Nur, O., Willander, M.: Fabrication and comparative optical characterization of n-ZnO nanostructures (nanowalls, nanorods, nanoflowers and nanotubes)/p-GaN white-light-emitting diodes. Scr. Mater. 64, 697–700 (2011b)

    Article  Google Scholar 

  6. Baek, H., Lee, C.-H., Chung, K., Yi, G.-C.: Epitaxial GaN microdisk lasers grown on graphene microdots. Nano Lett. 13, 2782–2785 (2013)

    ADS  Article  Google Scholar 

  7. Bano, N., Zaman, S., Zainelabdin, A., Hussain, S., Hussain, I., Nur, O., Willander, M.: ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method. J. Appl. Phys. 108, 043103 (2010)

  8. Behzadirad, M., Nami, M., Wostbrock, N., Kouhpanji, M.R.Z., Feezell, D.F., Brueck, S.R.J., Busani, T.: Scalable top-down approach tailored by interferometric lithography to achieve large-area single-mode GaN nanowire laser arrays on sapphire substrate. ASC Nano. 12, 2373–2380 (2018)

    Article  Google Scholar 

  9. Brillson, L.J., Lu, Y.: ZnO Schottky barriers and ohmic contacts. J. Appl. Phys. 109, 121301-1–121301-33 (2011)

    ADS  Article  Google Scholar 

  10. Chang, S.P., Chuang, R.W., Chang, S.J., Chiou, Y.Z., Lu, C.Y.: MBE n-ZnO/MOCVD p-GaN heterojunction light-emitting diode. Thin Solid Films 517, 5054–5056 (2009)

    ADS  Article  Google Scholar 

  11. Choi, Y., Kang, J., Hwang, D., Park, S.: Recent advances in ZnO-based light-emitting diodes. IEEE Trans. Electron Devices 57, 26–41 (2010)

    ADS  Article  Google Scholar 

  12. Chu, S., Lim, J.H., Mandalapu, L.J., Yang, Z., Li, L., Liu, J.L.: Sb-doped p-ZnO/Ga doped n-ZnO homojunction ultraviolet light emitting diodes. Appl. Phys. Lett. 92, 152103 (2008)

  13. Gokarna, A., Pavaskar, N.R., Sathaye, S.D., Ganesan, V., Bhoraskar, S.V.: Electroluminescence from heterojunctions of nanocrystalline CdS and ZnS with porous silicon. J. Appl. Phys. 92, 2118–2124 (2002)

    ADS  Article  Google Scholar 

  14. Huang, H., Fang, G., Li, S., Long, H., Mo, X., Wang, H., Li, Y., Jiang, Q., Carroll, D.L., Wang, J., Wang, M., Zhao, X.: Ultraviolet/orange bicolor electroluminescence from an n-ZnO/n-GaN isotype heterojunction light emitting diode. Appl. Phys. Lett. 99, 263502 (2011)

  15. Hwang, D.-K., Kang, S.-H., Lim, J.-H., Yang, E.-J., Oh, J.-Y., Yang, J.-H., Parka, S.-J.: p-ZnO/n-GaN heterostructure ZnO light-emitting diodes. Appl. Phys. Lett. 86, 222101 (2005)

  16. Jagadish, C., Pearton, S.: Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications. Elsevier Science, Hong Kong (2006)

    Google Scholar 

  17. Kapustianyk, V., Turko, B., Luzinov, I., Rudyk, V., Tsybulskyi, V., Malynych, S., Rudyk, Yu., Savchak, M.: LEDs based on p-type ZnO nanowires synthesized by electrochemical deposition method. Phys. Status Solidi (c) 11, 1501–1504 (2014)

    ADS  Article  Google Scholar 

  18. Kapustianyk, V., Turko, B., Rudyk, V., Rudyk, Y., Rudko, M., Panasiuk, M., Serkiz, R.: Effect of vacuumization on the photoluminescence and photoresponse decay of the zinc oxide nanostructures grown by different methods. Opt. Mater. 56, 71–74 (2016)

    ADS  Article  Google Scholar 

  19. Kim, K., Moon, T., Kim, J., Kim, S.: Electrically driven lasing in light-emitting devices composed of n-ZnO and p-Si nanowires. Nanotechnology 22, 245203 (2011)

  20. Kitamura, K., Kawazoe, T., Ohtsu, M.: Homojunction-structured ZnO light-emitting diodes fabricated by dressed-photon assisted annealing. Appl. Phys. B 107, 293–299 (2012)

    ADS  Article  Google Scholar 

  21. Klingshirn, C.: ZnO: from basics towards applications. Phys. Status Solidi (b) 244, 3027–3073 (2007)

    ADS  Article  Google Scholar 

  22. Kong, J.Y., Chu, S., Olmedo, M., Li, L., Yang, Z., Liu, J.L.: Dominant ultraviolet light emissions in packed ZnO columnar homojunction diodes. Appl. Phys. Lett. 93, 132113 (2008)

  23. Le, H.Q., Chua, S.J., Fitzgerald, E., Loh, K.P.: ZnO nanorods grown on p-GaN using hydrothermal synthesis and its optoelectronic devices application. Adv. Mater. Micro NanoSyst. 1, 1–6 (2007)

    Google Scholar 

  24. Lee, Y.-J., Yang, Z.-P., Lo, F.-Y., Siao, J.-J., Xie, Z.-H., Chuang, Y.-L., Lin, T.-Y., Sheu, J.-K.: Slanted n-ZnO/p-GaN nanorod arrays light-emitting diodes grown by oblique-angle deposition. APL Mater. 2, 056101 (2014)

  25. Li, C., Hurtado, A., Wright, J.B., Xu, H., Liu, S., Luk, T.S., Brener, I., Brueck, S.R.J., Wang, G.T.: Gallium nitride nanotube lasers. In: Conference on Lasers and Electro-Optics (2014). https://doi.org/10.1364/CLEO_SI.2014.SW1G.3

  26. Litton, C.W., Reynolds, D.C., Collins, T.C.: Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, 1st edn. Wiley, Chichester (2011)

    Book  Google Scholar 

  27. Lupan, O., Pauporte, T., Viana, B.: Low-voltage UV-electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes. Adv. Mater. 22, 3298–3302 (2010)

    Article  Google Scholar 

  28. Mandalapu, L.J., Yang, Z., Chu, S., Liu, J.L.: Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes. Appl. Phys. Lett. 92, 122101 (2008)

  29. Monemar, B., Khromov, S., Pozina, G., Paskov, P., Bergman, P., Hemmingsson, C., Hultman, L., Amano, H., Avrutin, V., Li, X., Morkoc, H.: Luminescence of acceptors in Mg-doped GaN. Jpn. J. Appl. Phys. 52, 08JJ03 (2013)

  30. Morkoc, H., Ozgur, U.: Zinc Oxide: Fundamentals, Materials and Device Technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009)

    Book  Google Scholar 

  31. Nakahara, K., Akasaka, S., Yuji, H., Tamura, K., Fujii, T., Nishimoto, Y., Takamizu, D., Sasaki, A., Tanabe, T., Takasu, H., Amaike, H., Onuma, T., Chichibu, S.F., Sukazaki, A., Ohtomo, A., Kawasaki, M.: Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates. Appl. Phys. Lett. 97, 013501 (2010)

  32. Nickel, N.H., Terukov, E.: Zinc Oxide—A Material for Micro- and Optoelectronic Applications. Springer, Dordrecht (2005)

    Book  Google Scholar 

  33. Ozgur, U., Alivov, Y., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S., Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301-1–041301-103 (2005)

    ADS  Article  Google Scholar 

  34. Ryu, Y.R., Lee, T.-S., Lubguban, J.A., White, H.W., Kim, B.J., Park, Y.S., Youn, C.J.: Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett. 88, 241108 (2006)

  35. Serban, E.A., Palisaitis, J., Yeh, C.-C., Hsu, H.-C., Tsai, Y.-L., Kuo, H.-C., Junaid, M., Hultman, L., Persson, P.O.A., Birch, J., Hsiao, C.-L.: Selective-area growth of single crystal wurtzite GaN nanorods on SiOx/Si(001) substrates by reactive magnetron sputter epitaxy exhibiting single-mode lasing. Sci. Rep. 7, 12701 (2017)

  36. Sun, J.C., Zhao, J.Z., Liang, H.W., Bian, J.M., Hu, L.Z., Zhang, H.Q., Liang, X.P., Liu, W.F., Du, G.T.: Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO:As/GaAs structure. Appl. Phys. Lett. 90, 121128 (2007)

  37. Sun, H., Zhang, Q., Zhang, J., Deng, T., Wu, J.: Electroluminescence from ZnO nanowires with a p-ZnO film/n-ZnO nanowire homojunction. Appl. Phys. B 90, 543–546 (2008)

    ADS  Article  Google Scholar 

  38. Toporovska, L., Hrytsak, A., Turko, B., Rudyk, V., Tsybulskyi, V., Serkiz, R.: Photocatalytic properties of zinc oxide nanorods grown by different methods. Opt. Quant. Electron. 49, 408 (2017)

  39. Wajid, A.: On the accuracy of the quartz-crystal microbalance (QCM) in thin-film depositions. Sens. Actuators A 63, 41–46 (1997)

    Article  Google Scholar 

  40. Wang, Z.L.: ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng. 64, 33–71 (2009)

    Article  Google Scholar 

  41. Xu, S., Wang, Z.L.: One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011)

    Article  Google Scholar 

  42. Yi, S.N., Ahn, H.S., Yang, M., Kim, K.H., Kim, H., Yi, J.Y., Chang, J.H., Kim, H.S.: Effect of interface on the optical properties of GaN grown by HVPE. J. Korean Phys. Soc. 45, S598–S600 (2004)

    Google Scholar 

  43. Yu, Q.X., Xu, B., Wu, Q.H., Liao, Y., Wang, G.Z., Fang, R.C.: Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode. Appl. Phys. Lett. 83, 4713–4715 (2003)

    ADS  Article  Google Scholar 

  44. Zhang, X.M., Lu, M.-Y., Zhang, Y., Chen, L.-J., Wang, Z.L.: Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 21, 2767–2770 (2009)

    Article  Google Scholar 

  45. Zhao, J.L., Teo, K.L., Zheng, K., Sun, X.W.: Color tunable electroluminescence and resistance switching from a ZnO-nanorod–TaOxp-GaN heterojunction. Nanotechnology 27, 115204 (2016)

Download references

Acknowledgements

The publication contains the results of research conducted with the grant support of the State Fund for Fundamental Research of Ukraine under the competition project F76/100.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Turko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Turko, B., Nikolenko, A., Sadovyi, B. et al. Electroluminescence from n-ZnO microdisks/p-GaN heterostructure. Opt Quant Electron 51, 135 (2019). https://doi.org/10.1007/s11082-019-1853-5

Download citation

Keywords

  • Zinc oxide
  • Gallium nitride
  • Microdisks
  • Heterojunction
  • Electroluminescence