Skip to main content
Log in

Ultrathin c-Si solar cells based on microcavity light trapping scheme

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Ultrathin c-Si solar cells with a new light trapping scheme, which is a double-microcavity light trapping structure, are optimized and analyzed. The results show that by optimizing the geometric parameters of each light trapping unit, the light trapping structure can effectively improve the light absorption efficiencies of ultrathin crystalline silicon cells with different thicknesses. The thinner the active layer of a crystalline silicon solar cell, the more obvious the effect of the light trapping structure to enhance the light absorption. When the active layer thickness of a crystalline silicon cell is 3 μm, the battery efficiency can reach 16.3193%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Augusto, A., Tyler, K., Herasimenka, S.Y., et al.: Flexible modules using < 70 μm thick silicon solar cells. Energy Procedia 92, 493–499 (2016)

    Article  Google Scholar 

  • Branham, M.S., Hsu, W.C., Yerci, S., et al.: 15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures. Adv. Mater. 27(13), 2182–2188 (2015)

    Article  Google Scholar 

  • Chen, Y., Kang, Y., Jia, J., et al.: Nanostructured dielectric layer for ultrathin crystalline silicon solar cells. Int. J. Photoenergy 2017, 7153640 (2017)

    Google Scholar 

  • Cruz-Campa, J.L., Okandan, M., Resnick, P.J., et al.: Microsystems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell. Solar Energy Mater. Solar Cells 95(2), 551–558 (2011)

    Article  Google Scholar 

  • Dimitrov, D.Z., Du, C.-H.: Crystalline silicon solar cells with micro/nano texture. Appl. Surf. Sci. 266, 1–4 (2013)

    Article  ADS  Google Scholar 

  • Dubey, R.S., Saravanan, S., Kalainathan, S.: Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector and diffraction grating. AIP Adv. 4, 127121 (2014)

    Article  ADS  Google Scholar 

  • Hadibrata, W., Es, F., Yerci, S., et al.: Ultrathin Si solar cell with nanostructured light trapping by metal assisted etching. Solar Energy Mater. Solar Cells 180(15), 247–252 (2018)

    Article  Google Scholar 

  • Li, S., Jadidi, M.M., Murphy, T.E., Kumar, G.: Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves. Opt. Exp. 21, 7041–7049 (2013)

    Article  ADS  Google Scholar 

  • Lu, X., Zhang, P., Zhao, Y., et al.: Ultrathin crystalline silicon solar cells by textured triangular grating. Opt. Quantum Electron. 48(1), 50 (2016a)

    Article  Google Scholar 

  • Lu, X., Zhao, Y., Wang, Z., et al.: Influence of environmental temperature and device temperature difference on output parameters of c-Si solar cells. Sol. Energy 136, 333–341 (2016b)

    Article  ADS  Google Scholar 

  • Lu, X., Wang, X., Gao, J., et al.: Two-cavity light-trapping scheme used in ultrathin c-Si solar cells. Opt. Lett. 43, 4731–4734 (2018)

    Article  ADS  Google Scholar 

  • Moreno, M., Murias, D., Martínez, J., et al.: A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells. Sol. Energy 101, 182–191 (2014)

    Article  ADS  Google Scholar 

  • Niepelt, R., Hensen, J., Knorr, A., et al.: High-quality exfoliated crystalline silicon foils for solar cell applications. Energy Procedia 55, 570–577 (2014)

    Article  Google Scholar 

  • Nussbaum, P., Volkel, R., Herzig, H.P., et al.: Design, fabrication and testing of microlens arrays for sensors and microsystems. J. Opt. A Pure Appl. Opt. 6, 617–636 (1997)

    Article  ADS  Google Scholar 

  • Oskooi, A., Tanaka, Y., Noda, S.: Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range. Appl. Phys. Lett. 104, 091121 (2014)

    Article  ADS  Google Scholar 

  • Piotr, K., Andreani, L.C.: Towards the efficiency limits of silicon solar cells: how thin is too thin? Solar Energy Mater. Solar Cells 143, 260–268 (2015)

    Article  Google Scholar 

  • Pociask-Bialy, M., Mynbaev, K.D., Kaczmarzyk, M.: Light trapping by chemically micro-textured glass for crystalline silicon solar cells. Opto-Electron. Rev. 26(4), 307–311 (2018)

    Article  Google Scholar 

  • Schmid, M., Manley, P.: Enhancing solar cell efficiency by lenses on the nano- and microscale. In: Proceedings of SPIE—The International Society for Optical Engineering (2014)

  • Sohna, I.B., Choia, H.K., Noha, Y.C., et al.: Laser assisted fabrication of micro-lens array and characterization of their beam shaping property. Appl. Surf. Sci. 479, 375–385 (2019)

    Article  ADS  Google Scholar 

  • Tan, X., Yan, W., Tu, Y., et al.: Small pyramidal textured ultrathin crystalline silicon solar cells with double-layer passivation. Opt. Exp. 25(13), 14725–14731 (2017)

    Article  ADS  Google Scholar 

  • Tang, Q., Shen, H., Yao, H., et al.: Superiority of random inverted nanopyramid as efficient light trapping structure in ultrathin flexible c-Si solar cell. Renew. Energy 133, 883–892 (2019)

    Article  Google Scholar 

  • Wang, T.Y., Chen, C.H., Du, C.H., Kung, C.Y.: Fabrication of an ultrathin silicon wafer with a honeycomb structure by the thermal-stress-induced pattern transfer (TIPT) method. J. Micromech. Microeng. 22, 055014 (2012)

    Article  ADS  Google Scholar 

  • Wang, S., Weil, B.D., et al.: Large-area free-standing ultrathin single-crystal silicon as processable materials. Nano Lett. 13(9), 4393–4398 (2013)

    Article  ADS  Google Scholar 

  • Xianqin, M., Guillaume, G., Ounsi, E.D., et al.: Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation. Solar Energy Mater. Solar Cells 95(Supplement 1), S32–S38 (2011)

    Google Scholar 

  • Zhang, Y., Stokes, N., Jia, B., et al.: Towards ultrathin plasmonic silicon wafer solar cells with minimized efficiency loss. Sci. Rep. 4, 4939 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Optics in Materials, Energy and Related Technologies 2018.

Guest Edited by Yen-Hsun Su, Songnan Qu, Yiting Yu, Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y., Wang, X. et al. Ultrathin c-Si solar cells based on microcavity light trapping scheme. Opt Quant Electron 51, 138 (2019). https://doi.org/10.1007/s11082-019-1846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1846-4

Keywords

Navigation