Gate-tunable ReS2/MoTe2 heterojunction with high-performance photodetection

  • Man Luo
  • Xiaoyao Chen
  • Peisong Wu
  • Hailu Wang
  • Yunfeng Chen
  • Fansheng ChenEmail author
  • Lili ZhangEmail author
  • Xiaoshuang ChenEmail author


Van der Waals heterojunctions based on atomically thin two-dimensional (2D) materials have attracted numerous attention for their special scientific research value and promising applications in photoelectric and micro-nano electronic devices. Especially, the carrier generation, separation, and extraction process in 2D materials can be easily modulated by external field, which may facilitate some multifunctional electronics and optoelectronics. In this paper, we report a unique type-II band alignment ReS2/MoTe2 heterojunction with rectification inversion due to the fact the bottom few-layer MoTe2 can be easily tuned from p-type to n-type state through the applied back-gate voltage. Then we study photodetection properties of ReS2/MoTe2 heterojunction, a relatively fast photoresponse time of 109 μs and a considerable photoresponsivity of 0.34 AW−1 for 520 nm at room temperature show great potential in photodetection. Our studies of ReS2/MoTe2 heterojunction with rectification inversion and high-performance photodetection will facilitate the development of electronics and optoelectronics based on atomically-thin heterojunctions.


2D layer materials Heterojunction Rectification inversion Photodetection 



This work was supported in part by the Major State Basic Research Development Program (Grant No. 2018YFA0306204), National Natural Science Foundation of China (Grant Nos. 91850208 and 61804031).

Compliance with ethical standards

Conflict of interests

The authors declare no conflict of interests.


  1. Bellus, M.Z., Li, M., Lane, S.D., Ceballos, F., Cui, Q., Zeng, X.C., Zhao, H.: Type-I van der Waals heterostructure formed by MoS2 and ReS2 monolayers. Nanoscale Horiz. 2(1), 31–36 (2017)CrossRefGoogle Scholar
  2. Cao, S., Xing, Y., Han, J., Luo, X., Lv, W., Lv, W., Zhang, B., Zeng, Z.: Ultrahigh-photoresponsive UV photodetector based on a BP/ReS2 heterostructure p-n diode. Nanoscale 10(35), 16805–16811 (2018)CrossRefGoogle Scholar
  3. Castellanos-Gomez, A., Buscema, M., Molenaar, R., Singh, V., Janssen, L., van der Zant, H.S.J., Steele, G.A.: Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater 1(1), 011002 (2014)CrossRefGoogle Scholar
  4. Chen, Y., Wang, X., Wu, G., Wang, Z., Fang, H., Lin, T., Sun, S., Shen, H., Hu, W., Wang, J., Sun, J., Meng, X., Chu, J.: High-performance photovoltaic detector based on MoTe2/MoS2 Van der Waals heterostructure. Small (2018). CrossRefGoogle Scholar
  5. Cheng, R., Li, D., Zhou, H., Wang, C., Yin, A., Jiang, S., Liu, Y., Chen, Y., Huang, Y., Duan, X.: Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 14(10), 5590–5597 (2014)ADSCrossRefGoogle Scholar
  6. Cheng, X., Dong, S., Zhi, S., Paschel, S., Balasa, I., Ristau, D., Wang, Z.: Waterproof coatings for high-power laser cavities. Light-Sci. Appl. (2019). CrossRefGoogle Scholar
  7. Cui, Y., Li, B., Li, J., Wei, Z.: Chemical vapor deposition growth of two-dimensional heterojunctions. Sci. China-Phys. Mech. Astron. (2018). CrossRefGoogle Scholar
  8. Fang, H., Hu, W.: Hybrid heterojunctions based on 2D materials and 3D thin-films for high-performance photodetectors. Sci. China-Phys. Mech. Astron. (2017a). CrossRefGoogle Scholar
  9. Fang, H., Hu, W.: Photogating in low dimensional photodetectors. Adv. Sci. (2017b). CrossRefGoogle Scholar
  10. Gong, F., Fang, H., Wang, P., Su, M., Li, Q., Ho, J.C., Chen, X., Lu, W., Liao, L., Wang, J., Hu, W.: Visible to near-infrared photodetectors based on MoS2 vertical Schottky junctions. Nanotechnology (2017). CrossRefGoogle Scholar
  11. Han, J., Wang, J.: Photodetectors based on two-dimensional materials and organic thin-film heterojunctions. Chin. Phys. B (2019). CrossRefGoogle Scholar
  12. Hong, X., Kim, J., Shi, S.-F., Zhang, Y., Jin, C., Sun, Y., Tongay, S., Wu, J., Zhang, Y., Wang, F.: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9(9), 682–686 (2014)ADSCrossRefGoogle Scholar
  13. Horzum, S., Cakir, D., Suh, J., Tongay, S., Huang, Y.S., Ho, C.H., Wu, J., Sahin, H., Peeters, F.M.: Formation and stability of point defects in monolayer rhenium disulfide. Phys. Rev. B (2014). CrossRefGoogle Scholar
  14. Huang, H., Wang, J., Hu, W., Liao, L., Wang, P., Wang, X., Gong, F., Chen, Y., Wu, G., Luo, W., Shen, H., Lin, T., Sun, J., Meng, X., Chen, X., Chu, J.: Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology (2016). CrossRefGoogle Scholar
  15. Huo, N., Tongay, S., Guo, W., Li, R., Fan, C., Lu, F., Yang, J., Li, B., Li, Y., Wei, Z.: Novel optical and electrical transport properties in atomically thin WSe2/MoS2 p-n heterostructures. Adv. Electron. Mater. (2015). CrossRefGoogle Scholar
  16. Jiang, B., Zou, X., Su, J., Liang, J., Wang, J., Liu, H., Feng, L., Jiang, C., Wang, F., He, J., Liao, L.: Impact of thickness on contact issues for pinning effect in black phosphorus field-effect transistors. Adv. Funct. Mater. (2018). CrossRefGoogle Scholar
  17. Kang, J., Tongay, S., Zhou, J., Li, J., Wu, J.: Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. (2013). CrossRefGoogle Scholar
  18. Lezama, I.G., Arora, A., Ubaldini, A., Barreteau, C., Giannini, E., Potemski, M., Morpurgo, A.F.: Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Lett. 15(4), 2336–2342 (2015)ADSCrossRefGoogle Scholar
  19. Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)ADSCrossRefGoogle Scholar
  20. Li, Q., He, J., Hu, W., Chen, L., Chen, X., Lu, W.: Influencing sources for dark current transport and Avalanche Mechanisms in Planar and Mesa HgCdTe p-i-n electron-avalanche photodiodes. IEEE Trans. Electron Dev. 65(2), 572–576 (2018)ADSCrossRefGoogle Scholar
  21. Lin, Y.-F., Xu, Y., Wang, S.-T., Li, S.-L., Yamamoto, M., Aparecido-Ferreira, A., Li, W., Sun, H., Nakaharai, S., Jian, W.-B., Ueno, K., Tsukagoshi, K.: Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 26(20), 3263–3269 (2014)CrossRefGoogle Scholar
  22. Lin, Y.-C., Komsa, H.-P., Yeh, C.-H., Bjorkman, T., Liang, Z.-Y., Ho, C.-H., Huang, Y.-S., Chiu, P.-W., Krasheninnikov, A.V., Suenaga, K.: Single-layer ReS2: two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano 9(11), 11249–11257 (2015)CrossRefGoogle Scholar
  23. Liu, E., Long, M., Zeng, J., Luo, W., Wang, Y., Pan, Y., Zhou, W., Wang, B., Hu, W., Ni, Z., You, Y., Zhang, X., Qin, S., Shi, Y., Watanabe, K., Taniguchi, T., Yuan, H., Hwang, H.Y., Cui, Y., Miao, F., Xing, D.: High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater. 26(12), 1938–1944 (2016)CrossRefGoogle Scholar
  24. Liu, T., Tong, L., Huang, X., Ye, L.: Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials. Chin. Phys. B (2019). CrossRefGoogle Scholar
  25. Long, M., Liu, E., Wang, P., Gao, A., Xia, H., Luo, W., Wang, B., Zeng, J., Fu, Y., Xu, K., Zhou, W., Lv, Y., Yao, S., Lu, M., Chen, Y., Ni, Z., You, Y., Zhang, X., Qin, S., Shi, Y., Hu, W., Xing, D., Miao, F.: Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16(4), 2254–2259 (2016)ADSCrossRefGoogle Scholar
  26. Long, M., Wang, P., Fang, H., Hu, W.: Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. (2018). CrossRefGoogle Scholar
  27. Pezeshki, A., Hossein, S., Shokouh, H., Nazari, T., Oh, K., Im, S.: Electric and photovoltaic behavior of a few-layer alpha-MoTe2/MoS2 dichalcogenide heterojunction. Adv. Mater. 28(16), 3216–3222 (2016)CrossRefGoogle Scholar
  28. Ponraj, J.S., Xu, Z.Q., Dhanabalan, S.C., Mu, H.R., Wang, Y.S., Yuan, J., Li, P.F., Thakur, S., Ashrafi, M., McCoubrey, K., Zhang, Y.P., Li, S.J., Zhang, H., Bao, Q.L.: Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology (2016). CrossRefGoogle Scholar
  29. Shim, J., Oh, S., Kang, D.-H., Jo, S.-H., Ali, M.H., Choi, W.-Y., Heo, K., Jeon, J., Lee, S., Kim, M., Song, Y.J., Park, J.-H.: Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun. (2016). CrossRefGoogle Scholar
  30. Tongay, S., Sahin, H., Ko, C., Luce, A., Fan, W., Liu, K., Zhou, J., Huang, Y.-S., Ho, C.-H., Yan, J., Ogletree, D.F., Aloni, S., Ji, J., Li, S., Li, J., Peeters, F.M., Wu, J.: Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. (2014). CrossRefGoogle Scholar
  31. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)ADSCrossRefGoogle Scholar
  32. Wang, K., Huang, B., Tian, M., Ceballos, F., Lin, M.-W., Mahjouri-Samani, M., Boulesbaa, A., Puretzky, A.A., Rouleau, C.M., Yoon, M., Zhao, H., Xiao, K., Duscher, G., Geohegan, D.B.: Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 10(7), 6612–6622 (2016)CrossRefGoogle Scholar
  33. Wang, J., Fang, H., Wang, X., Chen, X., Lu, W., Hu, W.: Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small (2017a). CrossRefGoogle Scholar
  34. Wang, P., Liu, S., Luo, W., Fang, H., Gong, F., Guo, N., Chen, Z.-G., Zou, J., Huang, Y., Zhou, X., Wang, J., Chen, X., Lu, W., Xiu, F., Hu, W.: Arrayed Van Der Waals broadband detectors for dual-band detection. Adv. Mater. (2017b). CrossRefGoogle Scholar
  35. Wang, G., Zhang, Y., You, C., Liu, B., Yang, Y., Li, H., Cui, A., Liu, D., Yan, H.: Two dimensional materials based photodetectors. Infrared Phys. Technol. 88, 149–173 (2018)ADSCrossRefGoogle Scholar
  36. Withers, F., Del Pozo-Zamudio, O., Mishchenko, A., Rooney, A.P., Gholinia, A., Watanabe, K., Taniguchi, T., Haigh, S.J., Geim, A.K., Tartakovskii, A.I., Novoselov, K.S.: Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14(3), 301–306 (2015)ADSCrossRefGoogle Scholar
  37. Yang, T., Zheng, B., Wang, Z., Xu, T., Pan, C., Zou, J., Zhang, X., Qi, Z., Liu, H., Feng, Y., Hu, W., Miao, F., Sun, L., Duan, X., Pan, A.: Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. (2017). CrossRefGoogle Scholar
  38. Zhang, Q., Yang, S.A., Mi, W., Cheng, Y., Schwingenschloegl, U.: Large spin-valley polarization in monolayer MoTe2 on top of EuO(111). Adv. Mater. 28(5), 959–966 (2016)CrossRefGoogle Scholar
  39. Zhong, M., Xia, Q., Pan, L., Liu, Y., Chen, Y., Deng, H.-X., Li, J., Wei, Z.: Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: black arsenic. Adv. Funct. Mater. (2018). CrossRefGoogle Scholar
  40. Zhou, Z., Long, M., Pan, L., Wang, X., Zhong, M., Blei, M., Wang, J., Fang, J., Tongay, S., Hu, W., Li, J., Wei, Z.: Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano 12(12), 12416–12423 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Infrared Physics, and Key Laboratory of Intelligent Infrared Perception, Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.Laboratory of Advanced MaterialFudan UniversityShanghaiChina
  3. 3.School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations