The simulation on absorption properties of metamaterial/GaAs/electrode layer hybrid structure based Terahertz photoconductive detector

  • Yulu Chen
  • Xiong Yang
  • Wulin Tong
  • Bingbing Wang
  • Chuansheng Zhang
  • Haoxing Zhang
  • Yongshan Hu
  • Ming Pan
  • Xiaodong WangEmail author
Part of the following topical collections:
  1. Numerical Simulation of Optoelectronic Devices 2018


Terahertz (THz) photodetectors have attracted great attention from scientists worldwide for their application in security checking, biomedical treatment and astronomical observation of remote stars and distant galaxies. As a typical THz detector, extrinsic GaAs based photoconductive detector is facing critical technical bottlenecks in the epitaxial growth of sufficiently thick and high-quality GaAs absorption layer. In this work, a novel THz photoconductive detector based on metamaterial/GaAs/electrode layer hybrid structure was designed and simulated. By setting the periodic split ring resonator (SRR) structure as 88 μm pitch with 8 μm width, the absorption peaks exist at the wavelength of about 142 and 367 μm, which originate from the resonant cavity and the SRR dipole resonance effect, and the novel device shows a significant enhancement compared with the conventional GaAs photoconductive detector. Thus, the necessary thickness of GaAs absorption-layer is largely reduced, and the resonant absorption peak can be modulated by changing the thickness of absorption layer. This work provides a novel device structure which can solve the critical epitaxial growth bottleneck of GaAs photoconductive detector and used for the astronomical observation, security check, etc.


GaAs photoconductive detector Metamaterial Absorption Periodic split ring resonator (SRR) Dipole resonance 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 61705201, and 61404120), Shanghai Rising-Star Program (Grant No. 17QB1403900), Young Elite Scientists Sponsorship Program by CAST (Grant No. 2018QNRC001), Shanghai Sailing Program (Grant No. 17YF1418100), and Shanghai Youth Top-Notch Talent Development Program.


  1. Cardozo, B.L.: GaAs Blocked-Impurity-Band Detectors for Far-Infrared Astronomy Doctoral Thesis. University of California, Berkeley (2004)CrossRefGoogle Scholar
  2. Cardozo, B.L., Haller, E.E., Reichertz, L.A., Beeman, J.W.: Far-infrared absorption in GaAs: Te liquid phase epitaxial films. Appl. Phys. Lett. 83, 3990–3992 (2003)ADSCrossRefGoogle Scholar
  3. Jepsen, P.U., Cooke, D.G., Koch, M.: Terahertz spectroscopy and imaging-modern techniques and applications. Laser Photon. Rev. 5, 124–166 (2011)ADSCrossRefGoogle Scholar
  4. Katterloher, R.O., Jakob, G., Konuma, M., Krabbe, A., Haegel, N.M., Samperi, S.A., Beeman, J., Haller, E.E.: Liquid phase epitaxy centrifuge for growth of ultra-pure gallium arsenide for far infrared photoconductors. Proc. SPIE 4486, 200–209 (2002)ADSCrossRefGoogle Scholar
  5. Liu, H.B., Zhong, H., Karpowicz, N., Chen, Y.Q., Zhang, X.C.: Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95, 1514–1527 (2007)CrossRefGoogle Scholar
  6. Ouchi, T., Kajiki, K., Koizumi, T.: Terahertz imaging system for medical applications and related high efficiency terahertz devices. J. Infrared 35, 118–130 (2014)CrossRefGoogle Scholar
  7. Poglitsch, A., Katterloher, R.O., Hoenle, R., Beeman, J., Haller, E.E., Richter, H., Groezinger, U., Haegel, N.M., Krabbe, A.: Far-infrared photoconductors for Herschel and SO-FIA. Proc. SPIE. 4855, 115–128 (2003)ADSCrossRefGoogle Scholar
  8. Reichertz, L.A., Beeman, J.W., Cardozo, B.L., Jakob, G., Katterloher, R., Haegel, N.M., Haller, E.E.: Development of a GaAs based BIB detector for sub-mm wavelengths. Proc. SPIE 6275, 62751S (2006)ADSCrossRefGoogle Scholar
  9. Song, Z., Zhao, Z., Zhao, H.: Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators. J. Appl. Phys. 118, 043108 (2015)ADSCrossRefGoogle Scholar
  10. Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007)ADSCrossRefGoogle Scholar
  11. Watanabe, K., Ueno, M., Wakakl, M., Abe, O., Murkakmi, H.: GaAs: Se and GaAs: Te photoconductive detectors in 300 μm region for astronomical observations. J. Appl. Phys. 47, 8261–8264 (2008)CrossRefGoogle Scholar
  12. Watanabea, K., Yamashitac, K., Katazaa, H., Kamizukab, T., Wada, T., Wakakic, M., Abed, O., Murakamia, H.: Fabrication of the GaAs based terahertz photoconductors and the photometer for Tera-GATE. SPIE 7020, 702020–7020201 (2008)ADSGoogle Scholar
  13. Wu, P.C., Hsu, W.L., Chen, W.T., Huang, Y.W., Liao, C.Y., Liu, A.Q., Zheludev, N.I., Sun, G., Tsai, D.P.: Plasmon coupling in vertical split-ring resonator metamolecules. Scientific Reports. 5, 9726 (2015)CrossRefGoogle Scholar
  14. Zhang, C., Wang, B., Chen, Y., Hou, L., Pan, M., and Wang, X.: Study on the spectral response characteristics of GaAs-based Blocked-Impurity-Band Detectors. ICICM, 105–109 (2017)Google Scholar
  15. Zhou, D., Hou, L., Xie, W., Zang, Y., Lu, B., Chen, J., Wu, P.: Practical dual-band terahertz imaging system. Appl. Opt. 56, 3148–3154 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The 50th Research Institute of China Electronics Technology Group CorporationShanghaiChina
  2. 2.Shanghai Institute of Microsystem and Information TechnologyShanghaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations