Skip to main content
Log in

Highly efficient elliptical microcavity refractive index sensor with single detection unit

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Here, an elliptical cavity is investigated in its vertical and horizontal arrangement as a single detection unit in a 2D hexagonal hole-type photonic crystal. The Q-factors are 3700, and 2600 for vertical and horizontally arranged cavities, respectively. The notable characteristic of the presented sensor is mainly its large detection range for refractive indices in range of n = 1 to over 2. The operation of the sensor can be divided into two distinct detection regions in separate spectra located next to lower and higher edges of photonic band gap. The design of cavities and their sensing characteristics are discussed in detail for each topology using FDTD and PWE methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arafa, S., Bouchemat, M., Bouchemat, T., Benmerkhi, A.: High sensitive photonic crystal multiplexed biosensor array using H0 sandwiched cavities. In: EPJ Web Conferences, vol. 139, pp. 1–6 (2017a)

  • Arafa, S., Bouchemat, M., Bouchemat, T., Benmerkhi, A., Hocin, A.: Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection. Opt. Commun. 384, 93–100 (2017b)

    Article  ADS  Google Scholar 

  • Benmerkhi, A., Bouchemat, M., Bouchemat, T.: Influence of elliptical shaped holes on the sensitivity and Q factor in 2D photonic crystals sensor. Photonics Nanostruct. Fundam. Appl. 20, 7–17 (2016a)

    Article  ADS  Google Scholar 

  • Benmerkhi, A., Bouchemat, M., Bouchemat, T.: Improved sensitivity of the photonic crystal slab biosensors by using elliptical air holes. Optik 127(14), 5682–5687 (2016b)

    Article  ADS  Google Scholar 

  • Bing, P., Yao, J., Lu, Y., et al.: A surface plasmon resonance sensor based on photonic-crystal-fiber with large size microfluidic channels. Opt. Appl. 42(3), 493–501 (2012)

    Google Scholar 

  • Bougriou, F., Bouchemat, T., Bouchemat, M., Paraire, N.: Optofluidic sensor using two-dimensional photonic crystal waveguides. Eur. Phys. J. Appl. Phys. 62(1), 11201–11206 (2013)

    Article  ADS  Google Scholar 

  • Caër, C., Serna-Otálvaro, S.F., Zhang, W., Le Roux, X., Cassan, E.: Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator con fi guration. Opt. Lett. 39, 5792–5794 (2014)

    Article  ADS  Google Scholar 

  • Caoa, J., Suna, T., Grattan, K.T.V.: Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens. Actuators B Chem. 195, 332–351 (2014)

    Article  Google Scholar 

  • Chow, E., Grot, A., Mirkarimi, L.W., et al.: Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 29(10), 1093–1095 (2004)

    Article  ADS  Google Scholar 

  • Di Falco, A., O’Faolain, L., Krauss, T.F.: Chemical sensing in slotted photonic crystal heterostructure cavities. Appl. Phys. Lett. 94, 063503–063506 (2009)

    Article  ADS  Google Scholar 

  • Dutta, H.S., Pal, S.: Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Opt. Quant. Electron. 45(9), 907–917 (2013)

    Article  Google Scholar 

  • Dutta, H.S., Goyal, A.K., Pal, S.: Sensitivity enhancement in photonic crystal waveguide platform for refractive index sensing applications. J. Nanophotonics 8, 083088(1–6) (2014)

    Article  ADS  Google Scholar 

  • Frazao, O., Santos, J.L., Araujo, F.M., Ferreira, L.A.: Optical sensing with photonic crystal fibers. Laser Photonics Rev. 2(6), 449–459 (2008)

    Article  ADS  Google Scholar 

  • Harhouz, A., Hocini, A.: Design of high-sensitive biosensor based on cavity-waveguides coupling in 2D photonic crystal. Electromagn. Waves Appl. 29(5), 659–667 (2015)

    Article  Google Scholar 

  • Hocini, A., Harhouz, A.: Modeling and analysis of the temperature sensitivity in two dimensional photonic crystal microcavity. Nanophotonics 10(1), 016007(1–10) (2016)

    Google Scholar 

  • Huang, L., Tian, H., Yang, D., Zhou, J., Liu, Q., Zhang, P., Ji, Y.: Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator. Opt. Commun. 332, 42–49 (2014a)

    Article  ADS  Google Scholar 

  • Huang, L., Tian, H., Zhou, J., Ji, Y.: Design low crosstalk ring-slot array structure for label-free multiplexed sensing. Sensors 14, 15658–15668 (2014b)

    Article  Google Scholar 

  • Huang, L., Tian, H., Zhou, J., et al.: Label-free optical sensor by designing a high-Q photonic crystal ring-slot structure. Opt. Commun. 335, 73–77 (2015)

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton, NJ (2008)

    MATH  Google Scholar 

  • Kang, Ch., Weiss, ShM: Photonic crystal with multiple-hole defect for sensor applications. Opt. Express 16(22), 18188–18193 (2008)

    Article  ADS  Google Scholar 

  • Lai, W.C., Chakravarty, S., Wang, X., Lin, C., Chen, R.T.: On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguid. Opt. Lett. 36, 984–986 (2011)

    Article  ADS  Google Scholar 

  • Liu, Y., Mu, H., Wang, D., Yuan, L., Hou, Sh, Ren, D.: A polyatomic photonic crystal ring resonator and its application to the optical biochemical sensor. Soc. Photogr. Instrum. Eng. 10256, 102565H-1–102565H-1 (2017)

    Google Scholar 

  • Mandal, S., Erickson, D.: Nanoscale opto fluidic sensor array. Opt. Express 16, 1623–1631 (2008)

    Article  ADS  Google Scholar 

  • Mortensen, N.A., Xiao, S., Pedersen, J.: Liquid-infiltrated photonic crystals. Microfluid. Nanofluid. 4(1–2), 117–127 (2008)

    Article  Google Scholar 

  • Nair, R.V., Vijaya, R.: Photonic crystal sensors: an overview. Prog. Quantum Electron. 34(3), 89–134 (2010)

    Article  ADS  Google Scholar 

  • Nguyen, H.M., Dundar, M.A., van der Heijden, R.W., van der Drift, E.W., Salemink, H.W., Rogge, S., et al.: Compact Mach–Zehnder interferometer based on self-collimation of light in a silicon photonic crystal. Opt. Express 18, 6437–6446 (2010)

    Article  ADS  Google Scholar 

  • Notomi, M.: Strong light confinement with periodicity. Proc. IEEE 99(10), 1768–1779 (2011)

    Article  Google Scholar 

  • Olyaee, S., Dehghani, A.A.: High resolution and wide dynamic range pressure sensor based on two-dimensional photonic crystal. Photonic Sens. 2(1), 92–96 (2012a)

    Article  ADS  Google Scholar 

  • Olyaee, S., Dehghani, A.A.: Nano-pressure sensor using high quality photonic crystal cavity resonator. In: 8th IEEE, IET International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (2012b)

  • Olyaee, S., Najafgholinezhad, S.: Computational study of a label-free biosensor based on a photonic crystal nanocavity resonator. Appl. Opt. 52(29), 7206–7213 (2013)

    Article  ADS  Google Scholar 

  • Pal, S., Guillermain, E., Sriram, R., Miller, B., Fauchet, Ph.M.: Microcavities in photonic crystal waveguides for biosensor applications. In: Proceedings of SPIE, vol. 7553, p. 755304 (2010)

  • Rindorf, L., Jensen, J.B., Dufva, H.M., Pedersen, L.H., Hoiby, P.E., Bang, O.: Photonic crystal fiber long-period gratings for biochemical sensing. Opt. Express 14(18), 8224–8231 (2006)

    Article  ADS  Google Scholar 

  • Rostami, A., Nazari, F., Alipour Banaei, H., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8(1), 14–22 (2010)

    Article  ADS  Google Scholar 

  • Scullion, M.G., Fischer, M., Krauss, ThF: Fibre coupled photonic crystal cavity arrays on transparent substrates for spatially resolved sensing. Photonics 1(4), 412–420 (2014)

    Article  Google Scholar 

  • Shi, J., Hsiao, V.S., Walker, T.R., Huang, T.J.: Humidity sensing based on nanoporous polymeric photonic crystals. Sens. Actuators B 129, 391–396 (2008)

    Article  Google Scholar 

  • Wang, X., et al.: Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide. Opt. Commun. 281(6), 1725–1731 (2008)

    Article  ADS  Google Scholar 

  • Wang, X., Tan, Q., Yang, C., Lu, N., Jin, G.: Photonic crystal refractive index sensing based on sandwich structure. Optik 123, 2113–2115 (2012)

    Article  ADS  Google Scholar 

  • Yang, D., Tian, H., Ji, Y.: Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity array. Opt. Express 19, 20023–20034 (2011)

    Article  ADS  Google Scholar 

  • Zhang, Y., Zhao, Y., Wang, Q.: Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration. Sens. Actuators B Chem. 184, 179–188 (2013)

    Article  Google Scholar 

  • Zhang, Y., Zhao, Y., Wang, Q.: Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity. Sens. Actuators B Chem 209, 431–437 (2015)

    Article  Google Scholar 

  • Zhou, J., Tian, H., Yang, D., Liu, Q., Ji, Y.: Integration of high transmittance photonic crystal H2 nanocavity and broadband W1 waveguide for biosensing applications based on Silicon-on-Insulator substrate. Opt. Commun. 330, 175–183 (2014)

    Article  ADS  Google Scholar 

  • Zlatanovic, S., Mirkarimi, L.W., Sigalas, M.M., Bynum, M.A., Chow, E., Robotti, K.M., Grot, A.: Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration. Sens. Actuators B Chem. 141, 13–19 (2009)

    Article  Google Scholar 

  • Zouache, T., Hocini, A., Harhouz, A., Mokhtari, R.: Design of pressure sensor based on two-dimensional photonic crystal. Acta Phys. Pol. A 131(1), 68–70 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This project has been supported by Sahand University of Technology (SUT) under Contract No. 30.22196.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Noori.

Ethics declarations

Conflict of interest

We have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakili, M., Noori, M. Highly efficient elliptical microcavity refractive index sensor with single detection unit. Opt Quant Electron 51, 77 (2019). https://doi.org/10.1007/s11082-019-1804-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1804-1

Keywords

Navigation