Skip to main content
Log in

Temperature effect on the performance of a 1D grating-based surface-plasmon resonance sensors

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have theoretically studied the influence of temperature on the performance of a 1D grating sensor based on surface plasmon resonance. Rigorous coupled wave analysis method has been utilized to study the effect of the temperature on the sensing performance. The performance of the sensor has been evaluated on the basis of detection accuracy (DA), the sensitivity (S) and the quality parameter (χ). The effect of temperature on the DA, χ and S of the sensor with two different metals (gold and silver) has been compared. Our analysis exhibits that increasing of temperature may lead to poor detection accuracy and quality of the sensor, but the sensitivity is very stable with the change of temperature. Further, the results confirm that the room temperature T = 300 K provides a high DA and a high S, and a good quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bijalwan, A., Rastogi, V.: Gold–aluminum-based surface plasmon resonance sensor with a high quality factor and figure of merit for the detection of hemoglobin. Appl. Opt. 57, 9230–9237 (2018)

    Article  ADS  Google Scholar 

  • Brahmachari, K., Ray, M.: Admittance loci based design of plasmonic sensor working in wavelength interrogation regime. Sens. Imaging 15, 1–13 (2014)

    Article  Google Scholar 

  • Cai, D., Lu, Y., Lin, K., Wang, P., Ming, H.: Improving sensitivity of SPR sensor based on grating by double-dips method (DDM). Opt. Express 16, 14597–14602 (2008)

    Article  ADS  Google Scholar 

  • Chen, W.P., Chen, J.M.: Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films. J. Opt. Soc. Am. 71, 189–191 (1981)

    Article  ADS  Google Scholar 

  • Chiang, H.P., Leung, P.T., Tse, W.S.: The surface plasmon enhancement effect on absorbed molecules at elevated temperatures. J. Chem. Phys. 108, 2659–2660 (1998)

    Article  ADS  Google Scholar 

  • Chiang, H.P., Leung, P.T., Tse, W.S.: Remarks on the substrate–temperature dependence of surface-enhanced raman scattering. J. Phys. Chem. B 104, 2348–2350 (2000)

    Article  Google Scholar 

  • Chiang, H.P., Wang, Y.C., Leung, P.T., Tse, W.S.: A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface-plasmon resonance. Opt. Commun. 188, 283–289 (2001)

    Article  ADS  Google Scholar 

  • Dhibi, A., Sassi, I., Oumezzine, M.: Surface plasmon resonance sensor based on bimetallic alloys grating. Indian J. Phys. 90, 1–6 (2015)

    Google Scholar 

  • Dhibi, A., Khemiri, M., Oumezzine, M.: Theoretical study of surface plasmon resonance sensors based on 2D bimetallic alloy grating. Photonics Nano Fundam. Appl. 22, 1–8 (2016a)

    Article  ADS  Google Scholar 

  • Dhibi, A., Khemiri, M., Oumezzine, M.: Theoretical study of surface plasmons coupling in transition metallic alloy 2D binary grating. Phys. E Low Dimens. Syst. Nanostruct. 79, 160–166 (2016b)

    Article  ADS  Google Scholar 

  • Gentleman, D.J., Booksh, K.S.: Determining salinity using a multimode fiber optic surface plasmon resonance dip-probe. Talanta 68, 504–515 (2006)

    Article  Google Scholar 

  • Hasan, Md. R., Akter, S., Ahmed, K., Abbott, D.: Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber. IEEE Photonics Technol. Lett. 30, 315–318 (2018)

    Article  ADS  Google Scholar 

  • Holstein, T.: Optical and infrared volume absorptivity of metals. Phys. Rev. 96, 535–536 (1954)

    Article  ADS  Google Scholar 

  • Homola, J.: On the sensitivity of surface-plasmon resonance sensors with spectral interrogation. Sens. Actuators B 41, 207–211 (1997)

    Article  Google Scholar 

  • Homola, J.: Surface Plasmon Resonance Based Sensors. Springer, NewYork (2006)

    Book  Google Scholar 

  • Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sens. Actuators B 54, 3–15 (1999)

    Article  Google Scholar 

  • Islam, Md. S., Sultana, J., Ahmmed, A.R., Ahmed, R., Dinovitser, A., Brian, W.-H. Ng., Heike, E.H., Abbott, D.: Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt. Express 26, 30347–30361 (2018)

    Article  ADS  Google Scholar 

  • Jha, R., Sharma, A.K.: High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Opt. Lett. 34, 749–751 (2009)

    Article  ADS  Google Scholar 

  • Jung, S.L., Campbell, C.T., Chinowsky, T.M., Mar, M.N., Yee, S.S.: Quantitative interpretation of the response of surface-plasmon resonance sensors to absorbed films. Langmuir 14, 5636–5648 (1998)

    Article  Google Scholar 

  • Kort, B., Bernhard, R.: Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt. Express 23, 17179–17184 (2015)

    Article  Google Scholar 

  • Kretschmann, E., Raether, H.: Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A 23, 2135–2136 (1968)

    ADS  Google Scholar 

  • Lawrence, W.E.: Electron–electron scattering in the low temperature resistivity of the noble metals. Phys. Rev. B 13, 5316–5319 (1976)

    Article  ADS  Google Scholar 

  • Leung, P.T., Hider, M.H., Sanchez, E.J.: Surface-enhanced Raman scattering at elevated temperatures. Phys. Rev. B 53, 12659–12662 (1996)

    Article  ADS  Google Scholar 

  • Liedberg, B., Nylander, C., Lundstrom, I.: Surface plasmons resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983)

    Article  Google Scholar 

  • Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, New York (2007)

    Book  Google Scholar 

  • Moharam, M.G., Grann, E.B., Pommet, D.A., Gaylord, T.K.: Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12, 1068–1076 (1995)

    Article  ADS  Google Scholar 

  • Peng, W., Liang, Y.Z., Li, L.X., Liu, Y., Masson, J.-F.: Generation of multiple plasmon resonances in a nanochannel. IEEE Photonics J. 5, 4500509 (2013)

    Article  ADS  Google Scholar 

  • Perrotton, C., Javahiraly, N., Slaman, M., Dam, B., Meyrueis, P.: Fiber optic surface plasmon resonance sensor based on wavelength modulation for hydrogen sensing. Opt. Express 19, A1175–A1183 (2011)

    Article  ADS  Google Scholar 

  • Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, New York (1988)

    Book  Google Scholar 

  • Ritchie, R.H.: Plasma losses by fast electrons. Phys. Rev. 106, 874–881 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  • Roh, S., Chung, T., Lee, B.: Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors 11, 1565–1588 (2011)

    Article  Google Scholar 

  • Salamon, Z., Macleod, H.A., Tollin, G.: Surface-plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: theoretical principles. Biochim. Biophys. Acta 1331, 117–129 (1997)

    Article  Google Scholar 

  • Sharma, A.K., Gupta, B.D.: Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor. Appl. Opt. 45, 151–161 (2006)

    Article  ADS  Google Scholar 

  • Sharma, A.K., Gupta, B.D.: On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. Appl. Phys. 101, 093111–0931116 (2007)

    Article  ADS  Google Scholar 

  • Su, W., Zheng, G., Li, X.: Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating. Opt. Commun. 285, 4603–4607 (2012)

    Article  ADS  Google Scholar 

  • Tien, P.K., Martin, R.J.: Experiments on light waves in a thin tapered film and a new light-wave coupler. Appl. Phys. Lett. 18, 398–401 (1971)

    Article  ADS  Google Scholar 

  • Yuk, J.S., Guignon, E.F., Lynes, M.A.: Sensitivity enhancement of a grating-based surface plasmon-coupled emission (SPCE) biosensor chip using gold thickness. Chem. Phys. Lett. 591, 5–9 (2014)

    Article  ADS  Google Scholar 

  • Zhou, X., Cheng, T., Li, S., Suzuki, T., Ohishi, Y.: Practical sensing approach based on surface plasmon resonance in a photonic crystal fiber. OSA Contin. 1, 1332–1340 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhak Dhibi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhibi, A. Temperature effect on the performance of a 1D grating-based surface-plasmon resonance sensors. Opt Quant Electron 51, 78 (2019). https://doi.org/10.1007/s11082-019-1798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1798-8

Keywords

Navigation