Efficient coupling of dynamic electro-optical and heat-transport models for high-power broad-area semiconductor lasers


In this work, we discuss the modeling of edge-emitting high-power broad-area semiconductor lasers. We demonstrate an efficient iterative coupling of a slow heat transport (HT) model defined on multiple vertical–lateral laser cross-sections with a fast dynamic electro-optical (EO) model determined on the longitudinal–lateral domain that is a projection of the device to the active region of the laser. Whereas the HT-solver calculates temperature and thermally-induced refractive index changes, the EO-solver exploits these distributions and provides time-averaged field intensities, quasi-Fermi potentials, and carrier densities. All these time-averaged distributions are used repetitively by the HT-solver for the generation of the heat sources entering the HT problem solved in the next iteration step.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. BALaser: a software tool for simulation of dynamics in Broad Area semiconductor Lasers. http://www.wias-berlin.de/software/BALaser. Accessed 20 Feb 2019

  2. Blaaberg, S., Petersen, P.M., Tromborg, B.: Structure, stability, and spectra of lateral modes of a broad-area semiconductor laser. IEEE J. Quantum Electron. 43, 959–973 (2007)

    ADS  Article  Google Scholar 

  3. Borruel, L., Sujecki, S., Moreno, P.M.D., Wykes, J., Krakowski, M., Sumpf, B., Sewell, P.A., Auzanneau, S.C., Wenzel, H., Rodriguez, D., Benson, T.M., Larkins, E.C., Esquivias, I.: Quasi-3-D simulation of high-brightness tapered lasers. IEEE J. Quantum Electron. 40(3), 463–472 (2004)

    ADS  Article  Google Scholar 

  4. Champagne, Y., Mailhot, S., McCarthy, N.: Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with external cavity. IEEE J. Quantum Electron. 31, 795–810 (1995)

    ADS  Article  Google Scholar 

  5. Crump, P., Erbert, G., Wenzel, H., Frevert, C., Schultz, C.M., Hasler, K.-H., Staske, R., Sumpf, B., Maaßdorf, A., Brugge, F., Knigge, S., Tränkle, G.: Efficient high-power laser diodes. IEEE J. Sel. Top. Quantum Electron. 19(4), 1501211 (2013). https://doi.org/10.1109/JSTQE.2013.2239961

    ADS  Article  Google Scholar 

  6. Davis, T.A.: UMFPACK V4.3. ACM TOMS 30(2), 196–199 (2004)

    MathSciNet  Article  Google Scholar 

  7. Diehl, R.: High-Power Diode Lasers: Fundamentals, Technology, Applications. Springer, Berlin (2000)

    Book  Google Scholar 

  8. Fuhrmann, J., Streckenbach, T., et al.: pdelib: a finite volume and finite element toolbox for PDEs. http://www.pdelib.org. Accessed 20 Feb 2019

  9. Radziunas, M.: Modeling and simulations of broad-area edge-emitting semiconductor devices. Int. J. High Perform. Comput. Appl. 32(4), 512–522 (2018)

    Article  Google Scholar 

  10. Radziunas, M., Čiegis, R.: Effective numerical algorithm for simulations of beam stabilization in broad area semiconductor lasers and amplifiers. Math. Model. Anal. 19, 627–644 (2014)

    MathSciNet  Article  Google Scholar 

  11. Radziunas, M., Zeghuzi, A., Fuhrmann, J., Koprucki, T., Wünsche, H.-J., Wenzel, H., Bandelow, U.: Efficient coupling of the inhomogeneous current spreading model to the dynamic electro-optical solver for broad-area edge-emitting semiconductor devices. Opt. Quantum Electron. 49, 332 (2017). https://doi.org/10.1007/s11082-017-1168-3

    Article  Google Scholar 

  12. Rauch, S., Wenzel, H., Radziunas, M., Haas, M., Tränkle, G., Zimer, H.: Impact of longitudinal refractive index change on the near-field width of high-power broad-area diode lasers. Appl. Phys. Lett. 110(26), 263504 (2017). https://doi.org/10.1063/1.4990531

    ADS  Article  Google Scholar 

  13. Spreemann, M., Lichtner, M., Radziunas, M., Bandelow, U., Wenzel, H.: Measurement and simulation of distributed-feedback tapered master-oscillators power-amplifiers. IEEE J. Quantum Electron. 45, 609–616 (2009)

    ADS  Article  Google Scholar 

  14. Tachikawa, T., Takimoto, S., Shogenji, R., Ohtsubo, J.: Dynamics of broad-area semiconductor lasers with short optical feedback. IEEE J. Quantum Electron. 46, 140–149 (2010)

    ADS  Article  Google Scholar 

  15. Wenzel, H.: Basic aspects of high-power semiconductor laser simulation. IEEE J. Sel. Top. Quantum Electron. 19, 1–13 (2013)

    Article  Google Scholar 

  16. Zeghuzi, A., Radziunas, M., Wenzel, H., Wünsche, H.-J., Bandelow, U., Knigge, A.: Modeling of current spreading in high-power broad-area lasers and its impact on the lateral far field divergence. SPIE Proc. Ser. 10526, 105261H (2018a). https://doi.org/10.1117/12.2289803

    Article  Google Scholar 

  17. Zeghuzi, A., Radziunas, M., Klehr, A., Wünsche, H.-J., Wenzel, H., Knigge, A.: Influence of nonlinear effects on the characteristics of pulsed high-power broad-area distributed Bragg reflector lasers. Opt. Quantum Electron. 50, 88 (2018b). https://doi.org/10.1007/s11082-017-1297-8

    Article  Google Scholar 

Download references


This work is supported by the German Federal Ministry of Education and Research contract 13N14005 as part of the EffiLAS/HotLas project and by the EUROSTARS Project E!10524 HIP-Lasers.

Author information



Corresponding author

Correspondence to Mindaugas Radziunas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’ 18.

Guest edited by Paolo Bardella, Weida Hu, Slawomir Sujecki, Stefan Schulz, Silvano Donati, Angela Traenhardt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Radziunas, M., Fuhrmann, J., Zeghuzi, A. et al. Efficient coupling of dynamic electro-optical and heat-transport models for high-power broad-area semiconductor lasers. Opt Quant Electron 51, 69 (2019). https://doi.org/10.1007/s11082-019-1792-1

Download citation


  • Broad area lasers
  • Modeling
  • Traveling wave
  • Current spreading
  • Heat transport
  • Iterative coupling
  • Different time scales
  • Finite volumes
  • Efficient implementation