Skip to main content
Log in

Design and fabrication of ring resonator spectral response through-drop wavelengths selective

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we discuss the basic characteristics of the SOI based micro-ring resonator, and understand the influence of the high refractive index difference and the small size on the spectral characteristics of the ring resonator. The novelty and importance of the spectral response selectivity of ring resonators is driven by the grating couple technique. This advantage is the periodic variation of the refractive index in the coupled grating, which will result in the coupling of the conduction wave modes. By means of measurement and simulation, observe the changes and trends of the spectrum in steady state and transient state, and finally analyze the performance of the ring resonator in the application of signal processing. It achieves polarization-independent grating couplers with high efficiency, wide bandwidth and low polarization-dependent loss at around the 1560 nm optical communication band. Drop end set laser wavelength correction 1591.9 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn, H.-R., Lee, K.: Ring filters and their application to new measurement technique on inherent-ring-resonance frequency. In: IEE Proceedings-Microwaves, Antennas and Propagation, vol. 152, Issue 3, pp. 161–166 (2005)

    Article  Google Scholar 

  • Alaaeddine, H., Tantot, O., Delhote, N., Passerieux, D., Vedeyme, S.: Resonance of stacked rings in LTCC technology for non-destructive characterisation sensor at 150 GHz. In: 42nd European Microwave Conference, pp. 108–111 (2012)

  • Bruzzese, C., Tessarolo, A., Santini, E.: Failure root-cause analysis of end-ring torsional resonances and bar breakages in fabricated-cage induction motors. In: XXII International Conference on Electrical Machines (ICEM), pp. 2251–2258 (2016)

  • Eovino, B.E., Akhbari, S., Lin, L.: Broadband ring-shaped PMUTS based on an acoustically induced resonance. In: IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1184–1187 (2017)

  • Grajower, M., Mazursky, N., Shappir, J., Levy, U.: Post processing resonance trimming of a silicon micro-ring resonator using Flash memory technology. In: Conference on Lasers and Electro-Optics (CLEO), pp. 1–2 (2017)

  • Hasan, H., Adnan, M.F.: Plasmonic resonances in hexagonal split-ring resonator. In: International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 477–479 (2017)

  • Huang, S., Zou, C.-H., Lin, F., Lu, C.: Mixed electric/magnetic fano resonances in a combined square-shaped split ring with an internal square nanoantenna nanocavities. IEEE Photonics J. 10(1), 1–7 (2018)

    Google Scholar 

  • J. F. Greenleaf; X. Zhang,”4 K-6 Noninvasive Estimation of Local Elastic Modulus of Arteries with the Ring Resonance Measurement”, 2006 IEEE Ultrasonics Symposium,Pages: 1161–1164 (2006)

  • Jacques, M., Bouvier, S., Denis, D., Patel, D., Samani, A., Saber, M.G., Mounaim, F., Gauthier, J., Plant, D.V.: Analysis, modeling, and mitigation of parasitic resonances in integrated metallic seal rings. IEEE Trans. Compon. Packag. Manuf. Technol. 99, 1–10 (2017)

    Google Scholar 

  • Karampour, N., Nozhat, N.: Triple-band metamaterial absorber based on electric excitation of split ring resonator magnetic resonance. In: Fourth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), pp. 37–40 (2016)

  • Kimm, J., Madsen, C.K.: Double-ring resonance-enhanced linear photonic frequency discriminator for microwave-photonic links. J. Lightwave Technol. 32(1), 35–39 (2014)

    Article  ADS  Google Scholar 

  • Knights, A.P., Wang, Z., Paez, D., Dow, L.: Electrical trimming of the resonance of a silicon micro-ring resonator. In: IEEE 14th International Conference on Group IV Photonics (GFP), pp. 29–30 (2017)

  • Liou, J.-C., Wei, C.-C., Fang, K.-W.: Investigated resonance spectrum response of ring cavity. In: 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 1–2 (2017)

  • Liu, T., Xia, F., Du, W., Jiao, W., Shi, Y., Wang, Y., Lu, Y., Li, M., Yun, M.: Twinned plasmonic fano resonances in heterogeneous Au-Ag nanostructure consisting of a rod and concentric square ring-disk”. In: 2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3 M-NANO), pp: 87–90 (2017)

  • Luangxaysana, K., Louangvilay, X., Khamla, N.-A., Kanthavong, S., Khieovongphachanh, V.: All-optical clocked D flip-flop using modified add/drop resonance ring. In: 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 924–928 (2017)

  • Mak, J.C.C., Bois, A., Poon, J.K.S.: Programmable multi-ring butterworth filters with automated resonanceand coupling tuning. In: Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3 (2016)

  • Miao, Y., Li, M., Song, Y.: Ring fiber lasers based on EIT-like fano resonances as a wavelength-selective element. IEEE Photonics Technol. Lett. 29(21), 1900–1902 (2017)

    Article  ADS  Google Scholar 

  • Peng, L., Zhou, G., Li, M., Hou, Z., Xia, C., Ge, S.: Surface plasmon resonance sensor based on microstructured optical fiber with ring-core configuration. IEEE Photonics J. 8(5), 1–11 (2016)

    Article  Google Scholar 

  • Peng, L., Xie, J.-Y., Li, X.-F., Jiang, X.: Front to back ratio bandwidth enhancement of resonance based reflector antenna by using a ring-shape director and its time-domain analysis. IEEE Access 5, 15318–15325 (2017)

    Article  Google Scholar 

  • Sáez, A.J., Valero-Nogueira, A., Herranz, J.I., Rodrigo, V.M.: Ring resonances in groove gap waveguides with application to slot array antennas. In: 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 260–261 (2015)

  • Tu, Z., Gao, D.: Sharp fano resonance in subwavelength grating waveguide micro-ringresonator. In: 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), pp: 1–3 (2017)

  • Wang, Z., Paez, D.J., Dow, L., Knights, A.P.: Intrinsic resonance stabilization in depletion-type silicon micro-ringmodulators. In: IEEE 14th International Conference on Group IV Photonics (GFP), pp. 35–36 (2017)

  • Zhang, W., Serna, S., Le Roux X., Vivien, L., Cassan, E.: Silicon slot waveguide ring resonator: From single resonance to envelope index sensing. In: 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), pp. 1–3 (2016)

  • Zhang, X., Kinnick, R.R., Greenleaf, J.F.: P3A-3 further investigation of ring resonance in estimation of local elasticity of arteries. In: IEEE Ultrasonics Symposium Proceedings, pp. 1717–1719 (2007)

Download references

Acknowledgement

This work was supported by TMU106-AE1-B17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Chiun Liou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Optics in Materials, Energy and Related Technologies 2018.

Guest Edited by Yen-Hsun Su, Songnan Qu, Yiting Yu, Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liou, JC., Wang, FY. Design and fabrication of ring resonator spectral response through-drop wavelengths selective. Opt Quant Electron 51, 101 (2019). https://doi.org/10.1007/s11082-019-1784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1784-1

Keywords

Navigation