Skip to main content
Log in

Highly sensitive SPR PCF biosensors based on Ag/TiN and Ag/ZrN configurations

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We numerically present and analyze a surface plasmon resonance (SPR) bimetallic photonic crystal fiber (PCF) biosensor using full vectorial finite element method. The bimetallic configuration is based on Silver and (TiN or ZrN) as alternative plasmonic materials. The reported design relies on PCF with an external channel to house the analyte. The inner surface of the channel is coated by a silver layer followed by TiN or ZrN to protect the silver layer from oxidation. The proposed biosensor can be implemented to detect the unknown analytes, organic chemicals, biological analytes, and biomolecules via the sensitive resonant peaks to the analyte refractive index variations for both polarized modes with high linearity. In this study, a comparison is made between the Ag/TiN configuration and the Ag/ZrN counterpart in terms of sensitivity, losses, and linearity. The geometrical parameters are optimized to achieve high refractive index sensitivities of 7000 nm/RIU for quasi-transverse electric (TE) mode and 6900 nm/RIU for quasi-transverse magnetic (TM) mode, respectively for the Ag/TiN configuration. However, the quasi TE and quasi TM modes achieve high sensitivity of 5300 and 5400 nm/RIU, respectively using the Ag/ZrN configuration. The standard PCF fabrication technologies can be used to fabricate the proposed SPR PCF biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akowuah, E.K., Gorman, T., Ademgil, H., Haxha, S.: A highly sensitive photonic crystal fibre (PCF) surface plasmon resonance (SPR) sensor based on a bimetallic structure of gold and silver. In: IEEE 4th International Conference on Adaptive Science & Technology (ICAST), pp. 121–125 (2012a)

  • Akowuah, E.K., Gorman, T., Ademgil, H.: Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48, 1403–1410 (2012b)

    Article  ADS  Google Scholar 

  • Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 865 (2010). https://doi.org/10.1038/nmat2866

    Article  ADS  Google Scholar 

  • Azab, M.Y., Hameed, M.F.O., Nasr, A.M., Obayya, S.S.A.: Label free detection for DNA hybridization using surface plasmon photonic crystal fiber biosensor. Opt. Quantum Electron. 50, 1–13 (2018). https://doi.org/10.1007/s11082-017-1302-2

    Article  Google Scholar 

  • Azzam, S.I., Hameed, M.F.O.: Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quantum Electron. 48, 1–11 (2016). https://doi.org/10.1007/s11082-016-0414-4

    Article  Google Scholar 

  • Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994). https://doi.org/10.1006/jcph.1994.1159

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bise, R.T., Trevor, D.J.: Sol-gel derived microstructured fiber: fabrication and characterization. In: OFC/NFOEC Technical Digest Optical Fiber Communication Conference 2005. 3, 11–13 (2005). https://doi.org/10.1109/ofc.2005.192772

  • Boltasseva, A., Shalaev, V.M.: All that glitters need not be gold. Science 347, 1308–1310 (2015). https://doi.org/10.1126/science.aaa8282

    Article  ADS  Google Scholar 

  • COMSOL Multiphysics Software, http://www.comsol.com. Accessed 1 June 2018

  • Dash, J.N., Jha, R.: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. Photonics Technol. Lett. IEEE. 26, 1092–1095 (2014a)

    Article  ADS  Google Scholar 

  • Dash, J.N., Jha, R.: SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol. Lett. 26, 595–598 (2014b). https://doi.org/10.1109/LPT.2014.2301153

    Article  ADS  Google Scholar 

  • El-Saeed, A.H., Allam, N.K.: Refractory plasmonics: orientation-dependent plasmonic coupling in TiN and ZrN nanocubes. Phys. Chem. Chem. Phys. 20, 1881–1888 (2018). https://doi.org/10.1039/c7cp04933a

    Article  Google Scholar 

  • Falkenstein, P., Justus, B.L.: Fused array preform fabrication of holey optical fibers, Google Patents (2013)

  • Gobin, A.M., Lee, M.H., Halas, N.J., James, W.D., Drezek, R.A., West, J.L.: Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7, 1929–1934 (2007). https://doi.org/10.1021/nl070610y

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.A., Al-Begain, K., el Maaty, M., Nasr, A.M.: Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber. J. Lightwave Technol. 27, 4754–4762 (2009)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.A., Wiltshire, R.J.: Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers. IEEE Photonics Technol. Lett. 22(3), 188–190 (2010)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.A., Wiltshire, R.J.: Multiplexer–demultiplexer based on nematic liquid crystal photonic crystal fiber coupler. J. Lightwave Technol. 31(1), 81–86 (2013a)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Abdelrazzak, M., Obayya, S.S.A.: Novel design of ultra-compact triangular lattice silica photonic crystal polarization converter. J. Lightwave Technol. 31(1), 81–86 (2013b)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Alrayk, Y.K.A., Shaalan, A.A., El Deeb, W.S., Obayya, S.S.A.: Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophotonics 10(4), 046016 (2016)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Saadeldin, A.S., Elkaramany, E.M.A., Obayya, S.S.A.: Label-free highly sensitive hybrid plasmonic biosensor for the detection of DNA hybridization. J. Lightwave Technol. 35(22), 4851–4858 (2017). https://doi.org/10.1109/jlt.2017.2733720

    Article  ADS  Google Scholar 

  • Harrington, J.A.: A review of IR transmitting, hollow waveguides. Fiber Integr. Opt. 19, 211–227 (2000)

    Article  ADS  Google Scholar 

  • Hassani, A., Skorobogatiy, M.: Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 14, 11616–11621 (2006)

    Article  ADS  Google Scholar 

  • Hassani, A., Skorobogatiy, M.: Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J. Opt. Soc. Am. B. 24, 1423–1429 (2007)

    Article  ADS  Google Scholar 

  • Hautakorpi, M., Mattinen, M., Ludvigsen, H.: Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Express 16, 8427–8432 (2008). https://doi.org/10.1364/OE.16.008427

    Article  ADS  Google Scholar 

  • Heikal, A.M., Hameed, M.F.O., Obayya, S.S.A.: Improved trenched channel plasmonic waveguide. J. Lightwave Technol. 31(13), 2184–2191 (2013)

    Article  ADS  Google Scholar 

  • Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54, 3–15 (1999). https://doi.org/10.1016/S0925-4005(98)00321-9

    Article  Google Scholar 

  • Hussein, M., Hameed, M.F.O., Obayya, S.S.A., Swillam, M.A.: Effective modelling of silicon nanowire solar cells. In: 2017 International Applied Computational Electromagnetics Society Symposium—Italy, ACES 2017-7916023 (2017)

  • Hu, D.J.J., Ho, H.P.: Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv. Opt. Photonics. 9, 257–314 (2017)

    Article  ADS  Google Scholar 

  • Khalil, A.E., El-Saeed, A.H., Ibrahim, M.A., Hashish, M.E., Abdelmonem, M.R., Hameed, M.F.O., Azab, M.Y., Obayya, S.S.A.: Highly sensitive photonic crystal fiber biosensor based on titanium nitride. Opt. Quantum Electron. 50, 158 (2018a). https://doi.org/10.1007/s11082-018-1397-0

    Article  Google Scholar 

  • Khalil, A.E., El-Saeed, A.H., Ibrahim, M.A., Hashish, M.E., Abdelmonem, M.R., Hameed, M.F.O., Azab, M.Y., Obayya, S.S.A.: Highly Sensitive Photonic Crystal Fiber Biosensor Based on Alternative Plasmonic Material. SPIE Photonics Europe, Strasbourg Convention & Exhibition Centre, Strasbourg (2018b)

    Google Scholar 

  • Liu, C., Wang, F., Lv, J., Sun, T., Liu, Q., Fu, C., Mu, H., Chu, P.K.: A highly temperature-sensitive photonic crystal fi ber based on surface plasmon resonance Gold film. Opt. Commun. 359, 378–382 (2016). https://doi.org/10.1016/j.optcom.2015.09.108

    Article  ADS  Google Scholar 

  • Liu, C., Yang, L., Su, W., Wang, F., Sun, T., Liu, Q., Mu, H., Chu, P.K.: Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Opt. Commun. 382, 162–166 (2017). https://doi.org/10.1016/j.optcom.2016.07.031

    Article  ADS  Google Scholar 

  • Liu, S., Jin, L., Jin, W., Wang, D., Liao, C., Wang, Y.: Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser. Opt. Express 18, 5496–5503 (2010)

    Article  ADS  Google Scholar 

  • Luan, N., Wang, R., Lv, W., Yao, J.: Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt. Express 23, 8576–8582 (2015). https://doi.org/10.1364/OE.23.008576

    Article  ADS  Google Scholar 

  • Maier, S.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)

    Book  Google Scholar 

  • Maier, S.A., Atwater, H.A.: Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 1–10 (2005). https://doi.org/10.1063/1.1951057

    Article  Google Scholar 

  • Mahmoud, K.R., Hussein, M., Hameed, M.F.O., Obayya, S.S.A.: Super directive Yagi-Uda nanoantennas with an ellipsoid reflector for optimal radiation emission. J. Opt. Soc. Am. B 34, 2041–2049 (2017)

    Article  ADS  Google Scholar 

  • Momota, M.R., Hasan, M.R.: Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt. Mater. 76, 287–294 (2018). (ISSN 0925-3467)

    Article  ADS  Google Scholar 

  • Naik, G.V., Shalaev, V.M., Boltasseva, A.: Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013). https://doi.org/10.1002/adma.201205076

    Article  Google Scholar 

  • Otupiri, R., Akowuah, E.K., Haxha, S., Ademgil, H., AbdelMalek, F., Aggoun, A.: A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J. 6, 1–11 (2014). https://doi.org/10.1109/JPHOT.2014.2335716

    Article  Google Scholar 

  • Otupiri, R., Akowuah, E.K., Haxha, S.: Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications. Opt. Express 23, 15716–15727 (2015). https://doi.org/10.1364/OE.23.015716

    Article  ADS  Google Scholar 

  • Patsalas, P., Kalfagiannis, N., Kassavetis, S.: Optical properties and plasmonic performance of titanium nitride. Materials (Basel) 8, 3128–3154 (2015). https://doi.org/10.3390/ma8063128

    Article  ADS  Google Scholar 

  • Peng, L., Shi, F., Zhou, G., Ge, S., Hou, Z., Xia, C.: A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice. IEEE Photonics J. 7, 1–9 (2015). https://doi.org/10.1109/jphot.2015.2488278

    Article  Google Scholar 

  • Rifat, A.A., Mahdiraji, G.A., Sua, Y.M., Shee, Y.G., Ahmed, R., Chow, D.M., Adikan, F.R.M.: Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photonics Technol. Lett. 27, 1628–1631 (2015). https://doi.org/10.1109/LPT.2015.2432812

    Article  ADS  Google Scholar 

  • Rifat, A.A., Mahdiraji, G.A., Ahmed, R., Chow, D.M., Sua, Y.M., Shee, Y.G., Adikan, F.R.M.: Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photonics J. 8, 1–8 (2016). https://doi.org/10.1109/jphot.2015.2510632

    Article  Google Scholar 

  • Rifat, A.A., Haider, F., Ahmed, R., Mahdiraji, G.A., Adikan, F.R.M., Miroshnichenko, A.E.: Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt. Lett. 43, 891–894 (2018)

    Article  ADS  Google Scholar 

  • Russell, P.: Photonic crystal fibers. Science 299, 358–362 (2003)

    Article  ADS  Google Scholar 

  • Sharma, A.K., Gupta, B.D.: Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection. Opt. Fiber Technol. 12, 87–100 (2006). https://doi.org/10.1016/j.yofte.2005.07.001

    Article  ADS  Google Scholar 

  • Sokolov, K., Follen, M., Aaron, J., Pavlova, I., Malpica, A., Lotan, R., Richards-kortum, R.: Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63, 1999–2004 (2004)

    Google Scholar 

  • Takeyasu, N., Tanaka, T., Kawata, S.: Metal deposition deep into microstructure by electroless plating. Jpn. J. Appl. Phys. 44, L1134–L1137 (2005)

    Article  ADS  Google Scholar 

  • Wang, F., Sun, Z., Liu, C., Sun, T., Chu, P.K.: A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer. Plasmonics 12, 1847–1853 (2016). https://doi.org/10.1007/s11468-016-0453-5

    Article  Google Scholar 

  • Wei, Q., Shu-Guang, L., Jian-Rong, X., Xü-Jun, X., Lei, Z.: Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications. Chin. Phys. B 22, 74213 (2013). https://doi.org/10.1088/1674-1056/22/7/074213.

    Article  Google Scholar 

  • Wu, T., Shao, Y., Wang, Y., Cao, S., Cao, W., Zhang, F., Liao, C., He, J., Huang, Y., Hou, M., Wang, Y.: Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt. Express 25, 20313–20322 (2017)

    Article  ADS  Google Scholar 

  • Yang, X., Lu, Y., Liu, B., Yao, J.: Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12, 489–496 (2017). https://doi.org/10.1007/s11468-016-0289-z

    Article  Google Scholar 

  • Younis, B.M., Heikal, A.M., Hameed, M.F.O., Obayya, S.S.A.: Highly wavelength-selective asymmetric dual-core liquid photonic crystal fiber polarization splitter. J. Opt. Soc. Am. B Opt. Phys. 35, 1020–1029 (2018). https://doi.org/10.1016/j.tree.2008.04.010

    Article  ADS  Google Scholar 

  • Zhou, C.: Theoretical analysis of double-microfluidic-channels photonic crystal fiber sensor based on silver nanowires. Opt. Commun. 288, 42–46 (2013). https://doi.org/10.1016/j.optcom.2012.09.060

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Farhat O. Hameed or S. S. A. Obayya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Optical Wave and Waveguide Theory and Numerical Modelling, OQTNM 2018.

Guest Edited by Stefan Helfert, Manfred Hammer, Dirk Schulz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Saeed, A.H., Khalil, A.E., Hameed, M.F.O. et al. Highly sensitive SPR PCF biosensors based on Ag/TiN and Ag/ZrN configurations. Opt Quant Electron 51, 56 (2019). https://doi.org/10.1007/s11082-019-1764-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1764-5

Keywords

Navigation