Skip to main content

Advertisement

Log in

Transition metal-doped 3C-SiC as a promising material for intermediate band solar cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this report the un-surveyed domain of silicon-based intermediate band solar cell (IBSC) has been studied. Intermediate band (IB) has been created in 3C-SiC through substitution of cobalt (Co) atoms within super cell structures as a consequence of interaction between the crystalline potential and spin interaction with d orbitals of Co. The band structure, density of state and absorption coefficient of the new material have been extracted. Large band gap of 3C-SiC along with the proper selection of the guest Co atoms provides both high conversion efficiency and also, the possibility to reach the theoretical optimal band gap for photovoltaic applications. However, we demonstrated that a metallic narrow IB is formed whiten the forbidden band energy of 3C-SiC when Co atoms are located inside that. The maximum conversion efficiencies near 60% and 55% are obtained under AM1.5 and AM0 spectra, respectively. Our theoretical results provide a possible way to design high efficiency solar cell based on silicon carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilera, I., et al.: Theoretical optoelectronic analysis of MgIn2S4 and CdIn2 S4 thiospinels: effect of transition-metal substitution in intermediate-band formation. Phys. Rev. B 81(7), 0752061–0752069 (2010)

    Article  Google Scholar 

  • Bailey, C.G., et al.: Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells. Appl. Phys. Lett. 98(16), 1631051–1631053 (2011)

    Article  Google Scholar 

  • Beneš, O., et al.: Density functional theory, molecular dynamics, and differential scanning calorimetry study of the RbF–CsF phase diagram. J. Chem. Phys. 130(13), 1347161–13471613 (2009)

    Article  Google Scholar 

  • Bhatnagar, M., Baliga, B.J.: Comparison of 6H-SiC, 3C-SiC, and Si for power devices. IEEE Trans. Electron. Dev. 40(3), 645–655 (1993)

    Article  ADS  Google Scholar 

  • Blokhin, S., et al.: AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs. Semiconductors 43(4), 514–518 (2009)

    Article  ADS  Google Scholar 

  • Burke, K., Ernzerhof, M., Perdew, J.P.: The adiabatic connection method: a non-empirical hybrid. Chem. Phys. Lett. 265(1), 115–120 (1997)

    Article  ADS  Google Scholar 

  • Cuadra, L., Marti, A., Luque, A.: Influence of the overlap between the absorption coefficients on the efficiency of the intermediate band solar cell. IEEE Trans. Electron. Dev. 51(6), 1002–1007 (2004)

    Article  ADS  Google Scholar 

  • Elborg, M., et al.: Voltage dependence of two-step photocurrent generation in quantum dot intermediate band solar cells. Sol. Energy Mater. Sol. Cells 134, 108–113 (2015)

    Article  Google Scholar 

  • Falama, R.Z., Welaji, F.N., Dountio, E.G., Doka, S., Kofane, T.: Impact of high electric field on the detailed balance limit of efficiency of solar cells. Appl. Phys. A 123, 3501–3504 (2017)

    Article  Google Scholar 

  • Gimpel, T., Winter, S., Boßmeyer, M., Schade, W.: Quantum efficiency of femtosecond-laser sulfur hyperdoped silicon solar cells after different annealing regimes. Sol. Energy Mater. Sol. Cells 180, 168–172 (2018)

    Article  Google Scholar 

  • Glunz, S., et al.: Optimized high-efficiency silicon solar cells with Jsc = 42 mA/cm2 and η = 23.3%. In: Proceedings of the 14th European Photovoltaic Solar Energy Conference (1997)

  • Green, M.A., Bremner, S.P.: Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–24 (2017)

    Article  ADS  Google Scholar 

  • Green, M.A., et al.: Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015)

    Article  Google Scholar 

  • Heidarzadeh, H.: Comprehensive investigation of core–shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic–inorganic halide perovskite solar cell. Mater. Res. Express 5, 0362081–0362088 (2018)

    Google Scholar 

  • Heidarzadeh, H., et al.: A new proposal for Si tandem solar cell: significant efficiency enhancement in 3C-SiC/Si. Optik 125(3), 1292–1296 (2014a)

    Article  ADS  Google Scholar 

  • Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: Effect of dopant concentrations on conversion efficiency of SiC-based intermediate band solar cells. In: International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013), pp. 119–124. Springer (2014b)

  • Heidarzadeh, H., et al.: Efficiency analysis and electronic structures of 3C-SiC and 6H-SiC with 3d elements impurities as intermediate band photovoltaics. J. Photonics Energy 4(1), 0420981–04209812 (2014c)

    Article  Google Scholar 

  • Heidarzadeh, H., Mehrfar, F.: Effect of size non-uniformity on performance of a plasmonic perovskite solar cell: an array of embedded plasmonic nanoparticles with the Gaussian distribution radiuses. Plasmonics 13, 2305–2312 (2018)

    Article  Google Scholar 

  • Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: A new proposal for simultaneous multicolor detection based on quantum dots and selective energy contacts. IEEE Trans. Electron Dev. 62, 2231–2237 (2015)

    Article  ADS  Google Scholar 

  • Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core–shell hemispherical nanoparticles and metallic back grating. Appl. Opt. 55, 1779–1785 (2016)

    Article  ADS  Google Scholar 

  • Hu, K., Wang, D., Zhao, W., Gu, Y., Bu, K., Pan, J., Qin, P., Zhang, X., Huang, F.: Intermediate band material of titanium-doped tin disulfide for wide spectrum solar absorption. Inorg. Chem. 57, 3956–3962 (2018)

    Article  Google Scholar 

  • Hubbard, S., et al.: Effect of strain compensation on quantum dot enhanced GaAs solar cells. Appl. Phys. Lett. 92(12), 1235121–1235123 (2008)

    Article  Google Scholar 

  • Imran, A., Jiang, J., Eric, D., Yousaf, M.: Numerical modelling of high efficiency InAs/GaAs intermediate band solar cell. In: 2017 International Conference on Optical Instruments and Technology: Micro/Nano Photonics: Materials and Devices, International Society for Optics and Photonics, p. 106220A (2018)

  • Kim, J., et al.: Creating intermediate bands in ZnTe via co-alloying approach. Appl. Phys. Express 7(12), 121201 (2014)

    Article  ADS  Google Scholar 

  • Laghumavarapu, R., et al.: Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers. Appl. Phys. Lett. 91(24), 243115–243115-3 (2007)

    Article  ADS  Google Scholar 

  • Linares, P., et al.: Voltage limitation analysis in strain-balanced InAs/GaAsN quantum dot solar cells applied to the intermediate band concept. Sol. Energy Mater. Sol. Cells 132, 178–182 (2015)

    Article  Google Scholar 

  • Luque, A., Martí, A.: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78(26), 5011–5017 (1997)

    Article  ADS  Google Scholar 

  • Luque, A., et al.: General equivalent circuit for intermediate band devices: potentials, currents and electroluminescence. J. Appl. Phys. 96(1), 903–909 (2004)

    Article  ADS  Google Scholar 

  • Martí Vega, A., et al.: Elements of the design and analysis band solar of quantum-dot intermediate cells. Thin Solid Films 516(20), 6716–6722 (2008)

    Article  ADS  Google Scholar 

  • Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5193 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  • Navruz, T., Saritas, M.: Efficiency variation of the intermediate band solar cell due to the overlap between absorption coefficients. Sol. Energy Mater. Sol. Cells 92(3), 273–282 (2008)

    Article  Google Scholar 

  • Olsson, P., Domain, C., Guillemoles, J.-F.: Ferromagnetic compounds for high efficiency photovoltaic conversion: the case of AlP:Cr. Phys. Rev. Lett. 102(22), 2272041–2272044 (2009)

    Article  Google Scholar 

  • Oshima, R., Takata, A., Okada, Y.: Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells. Appl. Phys. Lett. 93(8), 083111–083111-3 (2008)

    Article  ADS  Google Scholar 

  • Palacios, P., et al.: Transition-metal-substituted indium thiospinels as novel intermediate-band materials: prediction and understanding of their electronic properties. Phys. Rev. Lett. 101(4), 464031–464034 (2008)

    Article  Google Scholar 

  • Pan, Z., Rao, H., Mora-Seró, I., Bisquert, J., Zhong, X.: Quantum dot-sensitized solar cells. Chem. Soc. Rev. 47, 7659–7702 (2018)

    Article  Google Scholar 

  • Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048–5079 (1981)

    Article  ADS  Google Scholar 

  • Ranjan, M., Bhatnagar, M.: Dense nanoparticles arrays for SERS sensors and plasmonic solar cells. In: Novel Optical Materials and Applications, Optical Society of America, pp. NoW3D. 6 (2018)

  • Rau, U., Blank, B., Müller, T.C., Kirchartz, T.: Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 7, 0440161–0440169 (2017)

    Article  Google Scholar 

  • Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  ADS  Google Scholar 

  • Tian, S.: Monte Carlo simulation of ion implantation in crystalline SiC with arbitrary polytypes. IEEE Trans. Electron. Dev. 55(8), 1991–1996 (2008)

    Article  ADS  Google Scholar 

  • Wahnón, P., Tablero, C.: Ab initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials. Phys. Rev. B 65(16), 1651151–16511510 (2002)

    Article  Google Scholar 

  • Wang, W., Lin, A.S., Phillips, J.D.: Intermediate-band photovoltaic solar cell based on ZnTe:O. Appl. Phys. Lett. 95(1), 0111031–0111033 (2009a)

    Google Scholar 

  • Wang, W., et al.: Generation and recombination rates at ZnTe:O intermediate band states. Appl. Phys. Lett. 95(26), 261107–261107-3 (2009b)

    Article  ADS  Google Scholar 

  • Wei, G., et al.: Thermodynamic limits of quantum photovoltaic cell efficiency. Appl. Phys. Lett. 91(22), 2235071–2235073 (2007)

    Google Scholar 

  • Winter, E., Micha, D., Klein, N., Pires, M., Souza, P.: Simulation of InGaAs/InGaP multiple quantum well systems for multijunction solar cell. In: 2017 32nd Symposium on Microelectronics Technology and Devices (SBMicro), IEEE, pp. 1–4 (2017)

  • Yu, K., et al.: Diluted II–VI oxide semiconductors with multiple band gaps. Phys. Rev. Lett. 91(24), 2464031–2464033 (2003)

    Article  Google Scholar 

  • Yu, K., et al.: Multiband GaNAsP quaternary alloys. Appl. Phys. Lett. 88(9), 092110–092110-3 (2006)

    Article  ADS  Google Scholar 

  • Zhang, Y., Shen, W.: Basic of Solid Electronics. Zhe-Jiang University Press, Hangzhou (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Heidarzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarzadeh, H. Transition metal-doped 3C-SiC as a promising material for intermediate band solar cells. Opt Quant Electron 51, 32 (2019). https://doi.org/10.1007/s11082-019-1742-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1742-y

Keywords

Navigation