Skip to main content
Log in

Ultra-sensitive surface plasmon resonance biosensor based on MoS2–graphene hybrid nanostructure with silver metal layer

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The optical biosensors based on the plasmonic technology are an important research item in the field of biophotonics. The graphene–molybdenum disulfide (MoS2) based hybrid structures are very effective in designing and fabricating of the sensitive optical biosensors. In this paper, we propose a nanostructure Ag/MoS2/graphene as an optical biosensor with high performance and sensitivity. The proposed configuration for this surface plasmon resonance (SPR) optical biosensor is Kretschmann. Herein, the enhancement of sensitivity for the proposed SPR optical biosensor is investigated in different states. By determining of the numbers of MoS2 layer and the thickness of the metal layer, we increased the sensitivity of the proposed biosensor. The maximum sensitivity ~ 190°/RIU is achieved. For this ultra-sensitive SPR biosensor with maximum sensitivity, the numbers of MoS2 and graphene layer is 2 and the resonance wavelength is determined 680 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Averitt, R.D., Sarkar, D., Halas, N.J.: Plasmon resonance shifts of Au-coated Au 2 S nanoshells: insight into multicomponent nanoparticle growth. Phys. Rev. Lett. 78(22), 4217 (1997)

    Article  ADS  Google Scholar 

  • Baronas, R., Ivanauskas, F., Kulys, J.: Mathematical Modeling of Biosensors: An Introduction for Chemists and Mathematicians, vol. 9. Springer, Berlin (2009)

    MATH  Google Scholar 

  • Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611–622 (2010)

    Article  ADS  Google Scholar 

  • Castellanos-Gomez, A., Agraït, N., Rubio-Bollinger, G.: Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 96(21), 213116 (2010)

    Article  ADS  Google Scholar 

  • Chang, S.-S., Shih, C.-W., Chen, C.-D., Lai, W.-C., Wang, C.R.C.: The shape transition of gold nanorods. Langmuir 15(3), 701–709 (1999)

    Article  Google Scholar 

  • Cole, R.M., Baumberg, J.J., de Abajo, F.J.G., Mahajan, S., Abdelsalam, M., Bartlett, P.N.: Understanding plasmons in nanoscale voids. Nano Lett. 7(7), 2094–2100 (2007)

    Article  ADS  Google Scholar 

  • Drude, P.: Zur elektronentheorie der metalle. Ann. Phys. 306(3), 566–613 (1900)

    Article  Google Scholar 

  • Filion-Côté, S., Roche, P.J.R., Foudeh, A.M., Tabrizian, M., Kirk, A.G.: Design and analysis of a spectro-angular surface plasmon resonance biosensor operating in the visible spectrum. Rev. Sci. Instrum. 85(9), 093107 (2014)

    Article  ADS  Google Scholar 

  • Healthcare, G.: Biacore sensor surface handbook. Technical report, GE Healthcare Bio-Sciences AB (2008)

  • Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)

    Article  Google Scholar 

  • Homola, J., Piliarik, M.: Surface Plasmon Resonance (SPR) Sensors. In: Homola, J. (eds.) Surface Plasmon Resonance Based Sensors. Springer Series on Chemical Sensors and Biosensors, vol. 4. Springer, Berlin (2006)

    Google Scholar 

  • Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors. Sens. Actuators B Chem. 54(1–2), 3–15 (1999)

    Article  Google Scholar 

  • Hossain, M., Rana, M.: Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization. Sens. Lett. 14(2), 145–152 (2016)

    Article  Google Scholar 

  • Jha, R., Sharma, A.K.: Chalcogenide glass prism based SPR sensor with Ag–Au bimetallic nanoparticle alloy in infrared wavelength region. J. Opt. A: Pure Appl. Opt. 11(4), 045502 (2009)

    Article  ADS  Google Scholar 

  • Kavcar, P., Sofuoglu, A., Sofuoglu, S.C.: A health risk assessment for exposure to trace metals via drinking water ingestion pathway. Int. J. Hygiene Environ. Health 212(2), 216–227 (2009)

    Article  Google Scholar 

  • Kawata, S.: Near-field microscope probes utilizing surface plasmon polaritons. In: Kawata, S. (eds.) Near-Field Optics and Surface Plasmon Polaritons. Topics in Applied Physics, vol. 81. Springer, Berlin (2001)

    Chapter  Google Scholar 

  • Khurgin, J.B., Boltasseva, A.: Reflecting upon the losses in plasmonics and metamaterials. MRS Bull. 37(8), 768–779 (2012)

    Article  Google Scholar 

  • Kretschmann, Erwin, Raether, Heinz: Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23(12), 2135–2136 (1968)

    Article  ADS  Google Scholar 

  • Langhammer, C., Yuan, Z., Zorić, I., Kasemo, B.: Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 6(4), 833–838 (2006)

    Article  ADS  Google Scholar 

  • Lee, K.-L., Lee, C.-W., Wang, W.-S., Wei, P.-K.: Sensitive biosensor array using surface plasmon resonance on metallic nanoslits. J. Biomed. Opt. 12(4), 044023 (2007)

    Article  ADS  Google Scholar 

  • Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS 2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  ADS  Google Scholar 

  • Matsubara, K., Kawata, S., Minami, S.: A compact surface plasmon resonance sensor for measurement of water in process. Appl. Spectrosc. 42(8), 1375–1379 (1988)

    Article  ADS  Google Scholar 

  • Mishra, A.K., Mishra, S.K., Verma, R.K.: An SPR-based sensor with an extremely large dynamic range of refractive index measurements in the visible region. J. Phys. D Appl. Phys. 48(43), 435502 (2015)

    Article  ADS  Google Scholar 

  • Murray, W.A., Barnes, W.L.: Plasmonic materials. Adv. Mater. 19(22), 3771–3782 (2007)

    Article  Google Scholar 

  • Neff, H., Sass, J.K., Lewerenz, H.J.: A photoemission-into-electrolyte study of surface plasmon excitation on high index faces of silver. Surf. Sci. Lett. 143(1), L356–L362 (1984)

    ADS  Google Scholar 

  • Niklasson, G.A., Granqvist, C.G., Hunderi, O.: Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt. 20(1), 26–30 (1981)

    Article  ADS  Google Scholar 

  • Nylander, C., Liedberg, B., Lind, T.: Gas detection by means of surface plasmon resonance. Sens. Actuators 3, 79–88 (1982)

    Article  Google Scholar 

  • Oh, B.-K., Lee, W., Chun, B.S., Bae, Y.M., Lee, W.H., Choi, J.-W.: The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosens. Bioelectr. 20(9), 1847–1850 (2005)

    Article  Google Scholar 

  • Oliveira, L.C., Lima, A.M.N., Thirstrup, C., Neff, H.F.: Surface Plasmon Resonance Sensors: A Materials Guide to Design and Optimization. Springer, Berlin (2015)

    Book  Google Scholar 

  • Prasad, P.N.: Introduction to Biophotonics. Wiley, London (2004)

    Google Scholar 

  • Rahman, M.S., Anower, M.S., Hasan, M.R., Hossain, M.B., Haque, M.I.: Design and numerical analysis of highly sensitive Au-MoS2–graphene based hybrid surface plasmon resonance biosensor. Opt. Commun. 396, 36–43 (2017)

    Article  ADS  Google Scholar 

  • Sambles, J.R., Bradbery, G.W., Yang, F.: Optical excitation of surface plasmons: an introduction. Contemp. Phys. 32(3), 173–183 (1991)

    Article  ADS  Google Scholar 

  • Sarid, D., Challener, W.A.: Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  • Serway, R.A., Jewett, J.W.: Principles of Physics, vol. 1. Saunders College Pub, Fort Worth (1998)

    Google Scholar 

  • Shushama, K.N., Rana, M.M., Inum, R., Hossain, M.B.: Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: simulation analysis. Opt. Commun. 383, 186–190 (2017)

    Article  ADS  Google Scholar 

  • Singh, P.: Surface Plasmon Resonance. Nova Science Publishers, Incorporated (2014)

    Google Scholar 

  • Smith, D.Y., Shiles, E., Inokuti, M.: The optical properties of metallic aluminum. In: Handbook of Optical Constants of Solids, pp. 369–406. Academic Press (1997)

  • Stephan, O., Taverna, D., Kociak, M., Henrard, L., Suenaga, K., Colliex, C.: Surface plasmon coupling in nanotubes. In: AIP Conference Proceedings, vol. 633, no. 1, pp. 326–331. AIP (2002)

  • Su, K.-H., Wei, Q.-H., Zhang, X., Mock, J.J., Smith, D.R., Schultz, S.: Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3(8), 1087–1090 (2003)

    Article  ADS  Google Scholar 

  • Tsay, J.M., Pflughoefft, M., Bentolila, L.A., Weiss, S.: Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals. J. Am. Chem. Soc. 126(7), 1926–1927 (2004)

    Article  Google Scholar 

  • Verma, R., Gupta, B.D., Jha, R.: Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 160(1), 623–631 (2011)

    Article  Google Scholar 

  • Verma, A., Prakash, A., Tripathi, R.: Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt. Commun. 357, 106–112 (2015)

    Article  ADS  Google Scholar 

  • Wallace, B.J., Guzewich, J.J., Cambridge, M., Altekruse, S., Morse, D.L.: Seafood-associated disease outbreaks in New York, 1980–1994. Am. J. Prev. Med. 17(1), 48–54 (1999)

    Article  Google Scholar 

  • Wang, F., Shen, Y.R.: General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97(20), 206806 (2006)

    Article  ADS  Google Scholar 

  • Wu, L., Jia, Y., Jiang, L., Guo, J., Dai, X., Xiang, Y., Fan, D.: Sensitivity improved SPR biosensor based on the mos 2/graphene–aluminum hybrid structure. J. Lightw. Technol. 35(1), 82–87 (2017a)

    Article  ADS  Google Scholar 

  • Wu, L., Guo, J., Wang, Q., Shunbin, L., Dai, X., Xiang, Y., Fan, D.: Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B Chem. 249, 542–548 (2017b)

    Article  Google Scholar 

  • Yuan, Y., Ding, L., Guo, Z.: Numerical investigation for SPR-based optical fiber sensor. Sens. Actuators B Chem. 157(1), 240–245 (2011)

    Article  Google Scholar 

  • Zhao, J., Zhang, X.Y., Yonzon, C.R., Haes, A.J., Van Duyne, R.P.: Localized surface plasmon resonance biosensors. Nanomedicine (Lond) 1(2), 219–228 (2006)

    Article  Google Scholar 

  • Zribi, A., Fortin, J. (eds.): Functional Thin Films and Nanostructures for Sensors: Synthesis. Physics and Applications. Springer, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Vahed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahed, H., Nadri, C. Ultra-sensitive surface plasmon resonance biosensor based on MoS2–graphene hybrid nanostructure with silver metal layer. Opt Quant Electron 51, 20 (2019). https://doi.org/10.1007/s11082-018-1739-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1739-y

Keywords

Navigation