Skip to main content
Log in

Nanoscale thermal analysis of InGaAs quantum well based semiconductor disk laser with different pump geometry

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Using the finite element method, thermal effects including the maximum temperature, the heat flux and the temperature gradient in the active region of semiconductor disk lasers with front and end pumped geometry are numerically analyzed at the first time. Nanoscale thermal conductivities of the multiple quantum wells and the distributed Bragg reflector are used to overcome the underestimate of the temperature rise which comes from the use of the weighted average of the bulk thermal conductivities in the previous works, and the calculated results are compared with the corresponding experiments. The maximum temperature of quantum wells in active region with end pump is always higher than that with front pump under same pump power. Because of its better mode matching, output powers of the end pumped laser are bigger than that of the front pumped laser when the pump power is relatively lower and the thermal rollover of laser has not happened. In comparison, the front pumped laser can tolerate much bigger pump power and produce much higher output power thanks to its better heat dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adachi, S.: Lattice thermal conductivity of group-IV and III–V semiconductor alloys. J. Appl. Phys. 102, 063502 (2007)

    Article  ADS  Google Scholar 

  • Aviles-Espinosa, R., Filippidis, G., Hamilton, C., Malcolm, G., Weingarten, K.J., Südmeyer, T., Barbarin, Y., Keller, U., Santos, S.I.C.O., Artigas, D., Loza-Alvarez, P.: Compact ultrafast semiconductor disk laser targeting GFP based nonlinear applications in living organisms. Biomed. Opt. Express 2, 739–747 (2011)

    Article  Google Scholar 

  • Butkus, M., Rautiainen, J., Okhotnikov, O.G., Hamilton, C.J., Malcolm, G.G., Mikhrin, S.S., Krestnikov, I.L., Livshits, D.A., Rafailov, E.U.: Quantum dot based semiconductor disk lasers for 1–1.3 μm. IEEE J. Sel. Top. Quantum 17, 1763–1771 (2011)

    Article  Google Scholar 

  • Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003)

    Article  ADS  Google Scholar 

  • Calvez, S., Hastie, J.E., Guina, M., Okhotnikov, O.G., Dawson, M.D.: Semiconductor disk lasers for the generation of visible and ultraviolet radiation. Laser Photonics Rev. 3, 407–434 (2009)

    Article  ADS  Google Scholar 

  • Chilla, J., Shu, Q.Z., Zhou, H., Weiss, E., Reed, M., Spinelli, L.: Recent advances in optically pumped semiconductor lasers. Proc. SPIE 6451, 645109 (2007)

    Article  Google Scholar 

  • Corzine, S.W., Geels, R.S., Scott, J.W., Yan, R.H., Coldren, L.A.: Design of Fabry–Perot surface-emitting lasers with a periodic gain structure. IEEE J. Quantum Electron. 25, 1513–1524 (1989)

    Article  ADS  Google Scholar 

  • Gaafar, M.A., Rahimi-Iman, A., Fedorova, K.A., Stolz, W., Rafailov, E.U., Koch, M.: Mode-locked semiconductor disk lasers. Adv. Opt. Photonics 8, 370–400 (2016)

    Article  ADS  Google Scholar 

  • Hader, J., Moloney, J.V., Koch, S.W.: Microscopic evaluation of spontaneous emission and Auger processes in semiconductor lasers. IEEE J. Quantum Electron. 41, 1217–1226 (2005)

    Article  ADS  Google Scholar 

  • Heinen, B., Wang, T.L., Sparenberg, M., Weber, A., Kunert, B., Hader, J., Koch, S.W., Moloney, J.V., Koch, M., Stolz, W.: 106 W continuous-wave output power from vertical-external-cavity surface-emitting laser. Electron. Lett. 48, 516–517 (2012)

    Article  Google Scholar 

  • Heinen, B., Möller, C., Jandieri, K., Kunert, B., Koch, M., Stolz, W.: The thermal resistance of high-power semiconductor disk lasers. IEEE J. Quantum Electron. 51, 1–9 (2015)

    Article  Google Scholar 

  • Jacquemet, M., Picqué, N., Guelachvili, G., Garnache, A., Sagnes, I., Strassner, M., Symonds, C.: Continuous-wave 1.55 μm diode-pumped surface emitting semiconductor laser for broadband multiplex spectroscopy. Opt. Lett. 32, 1387–1389 (2007)

    Article  ADS  Google Scholar 

  • Keller, U., Tropper, A.C.: Passively mode locked surface-emitting semiconductor lasers. Phys. Rep. 429, 67–120 (2006)

    Article  ADS  Google Scholar 

  • Kemp, A.J., Valentine, G.J., Hopkins, J.M., Hastie, J.E., Smith, S.A., Calvez, S., Dawson, M.D., Burns, D.: Thermal management in vertical-external-cavity surface-emitting lasers finite-element analysis of a heatspreader approach. IEEE J. Quantum Electron. 41, 148–155 (2005)

    Article  ADS  Google Scholar 

  • Kemp, A.J., Hopkins, J.M., Maclean, A.J., Schulz, N., Rattunde, M., Wagner, J., Burns, D.: Thermal management in 2.3 μm semiconductor disk lasers a finite element analysis. IEEE J. Quantum Electron. 4, 125–135 (2008)

    Article  ADS  Google Scholar 

  • Kim, G.B., Kim, J.Y., Lee, J., Yoo, J., Kim, K.S., Lee, S.M., Cho, S., Lim, S.J., Kim, T., Park, Y.: End-pumped green and blue vertical external cavity surface emitting laser devices. Appl. Phys. Lett. 89, 181106 (2006)

    Article  ADS  Google Scholar 

  • Kuznetsov, M., Hakimi, F., Sprague, R., Mooradian, A.: High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams. IEEE Photonics Technol. Lett. 9, 1063–1065 (1997)

    Article  ADS  Google Scholar 

  • Kuznetsov, M., Hakimi, F., Sprague, R., Mooradian, A.: Design and characteristics of high-power (> 0.5 W CW) diode-pumped vertical-external-cavity surface- emitting semiconductor lasers with circular TEM00 beams. IEEE J. Sel. Top. Quantum 5, 561–573 (1999)

    Article  Google Scholar 

  • Lindberg, H., Strassner, M., Gerster, E., Bengtsson, J., Larsson, A.: Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers. IEEE J. Sel. Top. Quantum 11, 1126–1134 (2005)

    Article  Google Scholar 

  • Men, Y., Wen, F.: Thermal properties of multiple quantum wells used in vertical-external-cavity surface-emitting lasers. Opt. Eng. 54, 076102 (2015)

    Article  ADS  Google Scholar 

  • Mignot, A., Feugnet, G., Schwartz, S., Sagnes, I., Garnache, A., Fabre, C., Pocholle, J.P.: Single-frequency external-cavity semiconductor ring laser gyroscope. Opt. Lett. 34, 97–99 (2009)

    Article  ADS  Google Scholar 

  • Morioka, S.B.: High power optically pumped semiconductor laser applications. Proc. SPIE 7919, 791913 (2011)

    Article  Google Scholar 

  • Piprek, J., Troger, T., Schroter, B., Kolodzey, J.A.K.J., Ih, C.S.: Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors. IEEE Photonics Technol. Lett. 10, 81–83 (1998)

    Article  ADS  Google Scholar 

  • Rahim, M., Felder, F., Fill, M., Zogg, H.: Optically pumped 5 μm IV–VI VECSEL with Al-heat spreader. Opt. Lett. 33, 3010–3012 (2008)

    Article  ADS  Google Scholar 

  • Rahimi-Iman, A.: Recent advances in VECSELs. J. Opt.-UK 18, 093003 (2016)

    Article  ADS  Google Scholar 

  • Rudin, B., Rutz, A., Hoffmann, M., Maas, D.J.H.C., Bellancourt, A.R., Gini, E., Südmeyer, T., Keller, U.: Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode. Opt. Lett. 33, 2719–2721 (2008)

    Article  ADS  Google Scholar 

  • Schulze, M., Masters, A.: Optically pumped semiconductor lasers expand the scope of potential applications. Laser Focus World 42, 77–79 (2006)

    Google Scholar 

  • Tropper, A.C., Hoogland, S.: Extended cavity surface-emitting semiconductor lasers. Prog. Quantum Electron. 30, 1–43 (2006)

    Article  ADS  Google Scholar 

  • Wagner, J., Hugger, S., Rösener, B., Fuchs, F., Rattunde, M., Yang, Q., Bronner, W., Aidam, R., Köhler, K., Raab, M., Romasew, E., Romasew, E., Tholl, H.D.: Infrared semiconductor laser modules for DIRCM applications. Proc. SPIE 74830, 74830F (2009)

    Article  ADS  Google Scholar 

  • Yao, T.: Thermal properties of AlAs/GaAs superlattices. Appl. Phys. Lett. 51, 1798–1800 (1987)

    Article  ADS  Google Scholar 

  • Zhang, P., Song, Y., Tian, J., Zhang, X., Zhang, Z.: Gain characteristics of the InGaAs strained quantum wells with GaAs AlGaAs and GaAsP barriers in vertical-external-cavity surface-emitting lasers. J. Appl. Phys. 105, 053103 (2009)

    Article  ADS  Google Scholar 

  • Zhang, P., Jiang, M., Zhu, R., Zhang, D., Song, Y.: Thermal conductivity of GaAs/AlAs distributed Bragg reflectors in semiconductor disk laser comparison of molecular dynamics simulation and analytic methods. Appl. Opt. 56, 4537–4542 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Chongqing Research Program of Basic Research and Frontier Technology (cstc2015jcyjBX0098, cstc2018jcyjAX0319), the National Natural Science Foundation of China (61575011), and the Foundation for the Creative Research Groups of Higher Education of Chongqing (CXTDX201601016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Jiang, L., Zhu, R. et al. Nanoscale thermal analysis of InGaAs quantum well based semiconductor disk laser with different pump geometry. Opt Quant Electron 51, 26 (2019). https://doi.org/10.1007/s11082-018-1737-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1737-0

Keywords

Navigation