Skip to main content

Advertisement

Log in

Enhanced absorption of monolayer molybdenum disulfide (MoS2) using nanostructures with symmetrical cross resonator in the visible ranges

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In order to enhance the absorption of monolayer molybdenum disulfide (MoS2), a novel nanostructure with symmetrical cross resonator based on MoS2 in the visible wavelength ranges has been proposed. At a resonant wavelength of 623 nm, the absorption of monolayer MoS2 in the absorption structure is as high as 82%, much higher than the bare MoS2 in the air. The electric field around monolayer MoS2 is enhanced by the guided mode resonance, thereby enhancing the absorption of monolayer MoS2 in the structure. The relevant parameters of the proposed structure are adjusted to achieve the tunability of the resonant wavelength in the visible ranges and the high-efficiency absorption of monolayer MoS2 in the structure, which is of great significance for the applications of MoS2-based optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amin, M., Farhat, M., Bagcı, H.: A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Sci. Rep. (2013). https://doi.org/10.1038/srep02105

    Article  Google Scholar 

  • Bahauddin, S.M., Robatjazi, H., Thomann, I.: Broadband absorption engineering to enhance light absorption in monolayer MoS2. ACS Photonics 3, 853–862 (2016)

    Article  Google Scholar 

  • Bao, Q.L., Loh, K.P.: Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677–3694 (2012)

    Article  Google Scholar 

  • Barrios, C.A., Almeida, V.R., Panepucci, R.R., Schmidt, B.S., Lipson, M.: Compact silicon tunable Fabry–Perot resonator with low power consumption. IEEE Photonics Technol. Lett. 16, 506–508 (2004)

    Article  ADS  Google Scholar 

  • Cai, Y., Lan, J., Zhang, G., Zhang, Y.-W.: Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89, 107–114 (2013)

    Google Scholar 

  • Cao, J.T., Wang, J., Yang, G.F., Lu, Y.N., Sun, R., Yan, P.F., Gao, S.M.: Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector. Superlattices Microstruct. 110, 26–30 (2017)

    Article  ADS  Google Scholar 

  • Cheng, L., Wang, T., Jiang, X., Yan, X., Xiao, S.: Polarization and angular sensibility in the natural hyperbolic hexagonal boron nitride arrays. J. Phys. D Appl. Phys. (2017). https://doi.org/10.1088/1361-6463/aa8af1

    Article  Google Scholar 

  • Cong, C., Shang, J., Wu, X., Cao, B., Peimyoo, N., Qiu, C., Sun, L., Yu, T.: Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2, 131–136 (2014)

    Article  Google Scholar 

  • Fan, S., Joannopoulos, J.: Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B (2002). https://doi.org/10.1103/PhysRevB.65.235112

    Article  Google Scholar 

  • Fan, Y.S., Guo, C.C., Zhu, Z.H., et al.: Monolayer-graphene-based perfect absorption structures in the near infrared. Opt. Express (2017). https://doi.org/10.1364/OE.25.013079

    Article  Google Scholar 

  • Feng, Q., Pu, M.B., Hu, C.G., Luo, X.G.: Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)

    Article  ADS  Google Scholar 

  • Huang, Y.J., Liu, L., Pu, M.B., Li, X., Ma, X.L., Luo, X.G.: A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum. Nanoscale 10, 8298–8303 (2018)

    Article  Google Scholar 

  • Janisch, C., Song, H.M., Zhou, C.J., Lin, Z., Elías, A.L., Ji, D.X., Terrones, M., Gan, Q.Q., Liu, Z.W.: MoS2 monolayers on nanocavities: enhancement in light–matter interaction. 2D Mater. (2016). https://doi.org/10.1088/2053-1583/3/2/025017

    Article  Google Scholar 

  • Jiang, X., Wang, T., Xiao, S., Yan, X., Cheng, L.: Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance. Opt. Express 25, 27028–27036 (2017)

    Article  ADS  Google Scholar 

  • Li, Y., Chernikov, A., Zhang, X., Rigosi, A., Hill, H., Zande, A., Chenet, D., Shih, E., Hone, J., Heinz, T.: Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B (2014). https://doi.org/10.1103/PhysRevB.90.205422

    Article  Google Scholar 

  • Li, X., Zhu, J., Wei, B.: Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmonenhanced applications. Chem. Soc. Rev. 45, 3145–3187 (2016a)

    Article  Google Scholar 

  • Li, J., Ji, Q., Chu, S., Zhang, Y., Li, Y., Gong, Q., Liu, K., Shi, K.: Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna. Sci. Rep. (2016b). https://doi.org/10.1038/srep23626

    Article  Google Scholar 

  • Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)

    Article  ADS  Google Scholar 

  • Liu, M., Yin, X., Zhang, X.: Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012)

    Article  ADS  Google Scholar 

  • Liu, J.T., Wang, T.B., Li, X.J., Liu, N.H.: Enhanced absorption of monolayer MoS2 with resonant back reflector. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4878700

    Article  Google Scholar 

  • Long, Y.B., Deng, H.D., Xu, H.T., Shen, L., Guo, W.B., Liu, C.Y., Huang, W.H., Peng, W.T., Li, L.X., Lin, H.J., Guo, C.: Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer. Opt. Mater. Express 7, 100–110 (2016)

    Article  ADS  Google Scholar 

  • Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A.: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013)

    Article  ADS  Google Scholar 

  • Lu, H., Cumming, B.P., Gu, M.: Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths. Opt. Lett. 40, 3647–3650 (2015)

    Article  ADS  Google Scholar 

  • Lu, H., Gan, X., Jia, B., Mao, D., Zhao, J.: Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons. Opt. Lett. 41, 4743–4746 (2016)

    Article  ADS  Google Scholar 

  • Lu, H., Gan, X.T., Mao, D., Zhao, J.L.: Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides. Photonics Res. 5, 162–167 (2017a)

    Article  Google Scholar 

  • Lu, H., Gan, X.T., Mao, D., Fan, Y.C., Yang, D.X., Zhao, J.L.: Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures. Opt. Express 25, 21630–21636 (2017b)

    Article  ADS  Google Scholar 

  • Magnusson, R., Wang, S.S.: New principle for optical filters. Appl. Phys. Lett. 61, 1022–1024 (1992)

    Article  ADS  Google Scholar 

  • Mak, K.F., Shan, J.: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016)

    Article  ADS  Google Scholar 

  • Mak, K.F., Lee, C., Hone, J., Shan, J., et al.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. (2010). https://doi.org/10.1103/PhysRevLett.105.136805

    Article  Google Scholar 

  • Mueller, T., Xia, F., Avouris, P.: Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010)

    Article  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field effect atomically thin carbon films. Science 306, 666–669 (2014)

    Article  ADS  Google Scholar 

  • Piper, J.R., Fan, S.H.: Broadband absorption enhancement in solar cells with an atomically thin active layer. ACS Photonics 3, 571–577 (2016)

    Article  Google Scholar 

  • Qu, Y., Li, Q., Gong, H., Du, K., Bai, S., Zhao, D., Ye, H., Qiu, M.: Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films. Adv. Opt. Mater. 4, 480–486 (2016)

    Article  Google Scholar 

  • Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)

    Article  ADS  Google Scholar 

  • Sidick, E., Knoesen, A., Mait, J.N.: Design and rigorous analysis of high-efficiency array generators. Appl. Opt. 32, 2599–2605 (1993)

    Article  ADS  Google Scholar 

  • Sobhani, A., Lauchner, A., Najmaei, S., Ayala-Orozco, C., Wen, F., Lou, J., Halas, N.J.: Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4862745

    Article  Google Scholar 

  • Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.Y., Galli, G., Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)

    Article  ADS  Google Scholar 

  • Wang, B., Zhang, X., Yuan, X., et al.: Optical coupling of surface plasmons between graphene sheets. Appl. Phys. Lett. 100, 131111-1–131111-4 (2012)

    ADS  Google Scholar 

  • Wang, J.C., Song, C., Hang, J., Hu, Z.D., Zhang, F.: Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration. Opt. Express 25, 23880–23892 (2017)

    Article  ADS  Google Scholar 

  • Wang, X.Y., Wang, J.C., Hu, Z.D., Sang, T., Feng, Y.: Perfect absorption of modified-molybdenum-disulfide-based Tamm plasmonic structures. Appl. Phys. Express (2018). https://doi.org/10.7567/APEX.11.062601

    Article  Google Scholar 

  • Xia, F., Wang, H., Xiao, D., Dubey, M., Ramasubramaniam, A.: Two-dimensional material nanophotonics. Nat. Photonics 8, 899 (2014)

    Article  ADS  Google Scholar 

  • Xia, S.X., Zhai, X., Huang, Y., Liu, J.Q., Wang, L.L., Wen, S.C.: Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Opt. Lett. 42, 3052–3055 (2017)

    Article  ADS  Google Scholar 

  • Xiao, S., Wang, T., Liu, Y., Xu, C., Han, X., Yan, X.: Tunable light trapping and absorption enhancement with graphene ring arrays. Phys. Chem. Chem. Phys. 18, 26661–26669 (2016)

    Article  Google Scholar 

  • Yan, X., Wang, T., Han, X., Xiao, S., Zhu, Y., Wang, Y.: High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators. Plasmonics 12, 1–7 (2016)

    Google Scholar 

  • Zeng, H., Dai, J., Yao, W., Xiao, D., et al.: Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012)

    Article  ADS  Google Scholar 

  • Zhang, W., Chuu, C.P., Huang, J.K., et al.: Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. (2014). https://doi.org/10.1038/srep03826

    Article  Google Scholar 

  • Zhang, J., Zhu, Z., Liu, W., Yuan, X., Qin, S.: Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering. Nanoscale 7, 13530–13536 (2015)

    Article  ADS  Google Scholar 

  • Zheng, J.B., Barton, R.A., Englund, D.: Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material based photovoltaics and photodetectors. ACS Photonics 1, 768–774 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11604124, 61604080, 61504050), Natural Science Foundation of Jiangsu Province (Nos. BK20150158, BK20160883, BM2014402), Open Project Program of State Key Laboratory of Food Science and Technology, Jiangnan University (No. SKLF-KF-201706), the China Postdoctoral Science Foundation (No. 2017M621623), the Fundamental Research Funds for Central Universities (Nos. JUSRP51628B, JUSRP51517, JUSRP51716A), the national first-class discipline program of Food Science and Technology (No. JUFSTR20180302), University Science Research Project of Jiangsu Province (No. 16KJB140011), and the Doctoral Starting Foundation of Wuxi Institute of Technology (No. 30593117033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guofeng Yang or Fuxue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Tian, Q., Yang, G. et al. Enhanced absorption of monolayer molybdenum disulfide (MoS2) using nanostructures with symmetrical cross resonator in the visible ranges. Opt Quant Electron 51, 21 (2019). https://doi.org/10.1007/s11082-018-1734-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1734-3

Keywords

Navigation