Millimeter-wave home area network prospect with cost-effective RoF links

  • Ali Kabalan
  • Salim FaciEmail author
  • Anne-Laure Billabert
  • Catherine Algani


The growth towards the millimeter-wave band in the home area networks (HAN) leads to high data rate transmission to satisfy the new user services. Unfortunately, the transmission coverage in this band is limited to short distances because of the strong air absorption and obstacles such as walls. The effort is then focused on the extension of the network coverage of the wireless link in this band. Solutions based on multiple connected access points to optical fibers are useful methods to ensure wireless connectivity to the entire home. For HAN applications, radio-over-fiber (RoF) using intensity modulation and direct detection technique is the mostly favorite technology for the transmission of a broadband wireless signal because dealing with a cost-effective solution. We investigate in this paper the performance of such RoF-wireless architecture with low-cost optoelectronic modules through the error vector magnitude (EVM) metric. The RoF links investigated are a directly modulated VCSEL with integrated photoreceiver module, an electroabsorption-modulated laser with PIN photodiode and a Mach–Zehnder Modulator with PIN photodiode. A simulation approach based on equivalent electrical circuit models of photonic components is developed in ADS (Advanced Design System) by using a co-simulation technique that combines both analog and digital signals. The downlink channel of the complete transmission system including wireless channel and frequency conversion circuits to millimeter-wave (mm-wave) band is studied by simulation. The obtained results of EVM show good performances of cost-effective links with QPSK and 16-QAM modulation over a dynamic range of 15 dB.


Radio over fiber Home area network Wireless channel Intensity modulation–direct detection 


  1. Akdeniz, M.R., Liu, Y., Samimi, M.K., Sun, S., Rangan, S., Rappaport, T.S., Erkip, E.: Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun. 32(6), 1164–1179 (2014). CrossRefGoogle Scholar
  2. Baykas, T., Sum, C., Lan, Z., Wang, J., Rahman, M.A., Harada, H., Kato, S.: IEEE 802.15.3c: the first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun. Mag. 49(7), 114–121 (2011). CrossRefGoogle Scholar
  3. Boers, M., Afshar, B., Vassiliou, I., Sarkar, S., Nicolson, S.T., Adabi, E., Perumana, B.G., Chalvatzis, T., Kavvadias, S., Sen, P., Chan, W.L., Yu, A.H., Parsa, A., Parsa, A., Nariman, M., Yoon, S., Besoli, A.G., Kyriazidou, C.A., Zochios, G., Castaneda, J.A., Sowlati, T., Rofougaran, M., Rofougaran, A.: A 16TX/16RX 60 GHz 802.11ad chipset with single coaxial interface and polarization diversity. IEEE J. Solid State Circuits 49(12), 3031–3045 (2014). CrossRefADSGoogle Scholar
  4. Capmany, J., Novak, D.: Microwave photonics combines two worlds. Nat Photon 1(6), 319–330 (2007). CrossRefADSGoogle Scholar
  5. Carpintero, G., Guzmán, R.C., Gordón, C., Kervella, G., Chitoui, M., Van Dijk, F.: Photonic integrated circuits for radio-frequency signal generation. J. Lightw. Technol. 34(2), 508–515 (2016). CrossRefADSGoogle Scholar
  6. Collonge, S., Zaharia, G., Zein, G.E.: Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel. IEEE Trans. Wirel. Commun. 3(6), 2396–2406 (2004). CrossRefGoogle Scholar
  7. Emami, S.: UWB Communication Systems: Conventional and 60 GHz Principles, Design and Standards. Springer, Berlin (2013)CrossRefGoogle Scholar
  8. Ginestar, S., van Dijk, F., Accard, A., Poingt, F., Pommereau, F., Le Gouezigou, L., Le Gouezigou, O., Lelarge, F., Rousseau, B., Landreau, J., et al.: Tunable dual-mode DFB laser for millimetre-wave signal generation. Eur. Phys. J. Appl. Phys. 53(3), 33609 (2011). CrossRefADSGoogle Scholar
  9. Guillory, J., Meyer, S., Sianud, I., Ulmer-moll, A.M., Charbonnier, B., Pizzinat, A., Algani, C.: Radio-over-fiber architectures. IEEE Veh. Technol. Mag. 5(3), 30–38 (2010). CrossRefGoogle Scholar
  10. Guillory, J., Tanguy, E., Pizzinat, A., Charbonnier, B., Meyer, S., Algani, C., Li, H.: A 60 GHz wireless home area network with radio over fiber repeaters. J. Lightw. Technol. 29(16), 2482–2488 (2011). CrossRefADSGoogle Scholar
  11. ITU-T G-series. Radio-over-fibre (RoF) technologies and their applications. ITU-T G Suppl. 55 (2015). URL
  12. Kabalan, A., Faci, S., Billabert, A.-L., Deshours, F., Algani, C.: Direct and external modulation of IF over fiber systems for 60 GHz wireless applications. Int. J. Microw. Wirel. Technol. 8(3), 597–602 (2016). CrossRefGoogle Scholar
  13. Kassa, W.E., Billabert, A.L., Faci, S.: Electrical modeling of semiconductor laser diode for heterodyne RoF system simulation. IEEE J. Quantum Electron. 49(10), 894–900 (2013). CrossRefADSGoogle Scholar
  14. Lebedev, A., Olmos, J.J.V., Pang, X., Forchhammer, S., Tafur Monroy, I.: Demonstration and comparison study for V- and W-band real-time high-definition video delivery in diverse fiber-wireless infrastructure. Fiber Integr. Optics 32(2), 93–104 (2013). CrossRefADSGoogle Scholar
  15. Lecoche, F., Tanguy, E., Charbonnier, B., Li, H., van Dijk, F., Enard, A., Blache, F., Goix, M., Mallecot, F.: Transmission quality measurement of two types of 60 GHz millimeter-wave generation and distribution systems. J. Lightw. Technol. 27(23), 5469–5474 (2009). CrossRefADSGoogle Scholar
  16. Li, J., Ning, T., Pei, L., Qi, C.: Millimeter-wave radio-over-fiber system based on two-step heterodyne technique. Opt. Lett. 34(20), 3136–3138 (2009). CrossRefADSGoogle Scholar
  17. Maltsev, A., Maslennikov, R., Sevastyanov, A., Lomayev, A., Khoryaev, A.: Statistical channel model for 60 GHz WLAN systems in conference room environment. In: Proceedings of the Fourth European Conference on Antennas and Propagation, pp. 1–5 (2010)Google Scholar
  18. Nitsche, T., Cordeiro, C., Flores, A.B., Knightly, E.W., Perahia, E., Widmer, J.C.: IEEE 802.11ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [invited paper]. IEEE Commun. Mag. 52(12), 132–141 (2014). CrossRefGoogle Scholar
  19. Novak, D., Waterhouse, R.B., Nirmalathas, A., Lim, C., Gamage, P.A., Clark, T.R., Dennis, M.L., Nanzer, J.A.: Radio-over-fiber technologies for emerging wireless systems. IEEE J. Quantum Electron. 52(1), 1–11 (2016)CrossRefGoogle Scholar
  20. Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work!. IEEE Access 1, 335–349 (2013). CrossRefGoogle Scholar
  21. Saleh, A.A.M., Valenzuela, R.: A statistical model for indoor multipath propagation. IEEE J. Sel. Areas Commun. 5(2), 128–137 (1987). CrossRefGoogle Scholar
  22. Sen, P., Sarkar, S., Dawn, D., Pinel, S., Laskar, J.: Integrated VCO With up/down converter for Si-based 60 GHz WPAN applications. IEEE Microw. Wirel. Compon. Lett. 18(2), 139–141 (2008). CrossRefGoogle Scholar
  23. Shafik, R.A., Rahman, M.S., Islam, A.R.: On the extended relationships among EVM, BER and SNR as performance metrics. In: 2006 International Conference on Electrical and Computer Engineering, pp. 408–411 (2006).
  24. Steed, R.J., Pozzi, F., Fice, M.J., Renaud, C.C., Rogers, D.C., Lealman, I.F., Moodie, D.G., Cannard, P.J., Lynch, C., Johnston, L., Robertson, M.J., Cronin, R., Pavlovic, L., Naglic, L., Vidmar, M., Seeds, A.J.: Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector. Opt. Express 19(21), 20048–20053 (2011). CrossRefADSGoogle Scholar
  25. Yang, L.L.: 60 GHz: opportunity for gigabit WPAN and WLAN convergence. SIGCOMM Comput. Commun. Rev. 39(1), 56–61 (2008). CrossRefGoogle Scholar
  26. Yong, S.-K.: A StaTG3c channel modeling sub-committee final report. IEEE 802.15- 07/0584- 01-003c (2009)Google Scholar
  27. Yong, S.K., Chong, C.-C.: An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges. EURASIP J. Wirel. Commun. Netw. 2007(1), 078907 (2006). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Le Conservatoire National des Arts et Métiers - ESYCOMParis Cédex 03France

Personalised recommendations