Skip to main content
Log in

Design and engineering of dispersion and loss in photonic crystal fiber 1 × 4 power splitter (PCFPS) based on hole size alteration and optofluidic infiltration

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have presented a technique based on optofluidic infiltration and air-holes diameter variation together to design a 1 × 4 photonic crystal fiber power splitter (PCFPS) which have very low dispersion (D): (0 ≤ D ≤ 2.5 (ps/nm/km) and very low loss (L): 0 ≤ L ≤ 0.025(dB/cm) in a wide range of wavelengths (1100–1700 nm). This approach allows us to control the dispersion of the fundamental mode in a PCF beam splitter by choosing appropriate refractive indices for liquids and suitable diameters for air-holes in PCF power splitter. In fact, the techniques, used in this paper are complementary of each other and give us more excellent results which are better than other reported results in researchers’ works so far. In this work, a new design of 1 × 4 photonic crystal fiber power splitter is proposed by using beam propagation method. An optical Gaussian signal at a wavelength of third communication window range (1550 nm) is inserted into the central core and equally is divided into four core (25% of the total input power interred to each core). In addition, the physical behavior of coupling characteristics is obtained by using coupled mode analysis. Numerical simulations show that input optical signal can be equally divided in photonic crystal fiber structure with low dispersion and low loss. The total size of proposed PCFPS is 30 µm × 30 µm × 1.2 mm, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal, G.P.: Fiber-Optic Communication Systems. Wiley, New York (2011)

    Google Scholar 

  • Birks, T.A., Knight, J.C., Russel, P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  • Broeng, J., Mogilevstev, D., Barkou, S.E., Bjarklev, A.: Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5, 305–330 (1999)

    Article  ADS  Google Scholar 

  • Diouf, M., Salem, A., Cherif, R., et al.: Super-flat coherent supercontinuum source in As38.8 Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Appl. Opt. 56(2), 163–169 (2017)

    Article  ADS  Google Scholar 

  • Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)

    Article  ADS  Google Scholar 

  • Ebnali-Heidari, M., Saghaei, H., Koohi-Kamali, F., Naser Moghadasi, M., Moravvej-Farshi, M.K.: Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers. IEEE J. Sel. Top. Quantum Electron 20(5), 582–589 (2014)

    Article  ADS  Google Scholar 

  • Elbaz, D., Malka, D., Zalevsky, Z.: Photonic crystal fiber based 1 × N intensity and wavelength splitters/couplers. Electromagnetics 32, 209–220 (2013)

    Article  Google Scholar 

  • Ghanbari, A., Kashaninia, A., Sadr, A., Saghaei, H.: Supercontinuum generation for optical coherence tomography using magnesium fluoride photonic crystal fiber. Optik Int. J. Light Electron Opt. 140, 545–554 (2017)

    Article  Google Scholar 

  • Gong, J.M., Zuo, X., Zhao, Y.: The steady SRS analysis theory of DWDM transmission system in single-mode silica fiber. Opt. Commun. 350, 257–262 (2015)

    Article  ADS  Google Scholar 

  • Haus, H.A., Huang, W.: Coupled-mode theory. Proc. IEEE 79, 1505–1517 (1991)

    Article  Google Scholar 

  • Joannopoulas, J.D., Mead, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (1995)

    Google Scholar 

  • Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2000)

    Article  ADS  Google Scholar 

  • Kalantari, M., Karimkhani, A., Saghaei, H.: Ultra-wide mid-IR supercontinuum generation in As2S3 photonic crystal fiber by rods filling technique. Optik Int. J. Light Electron Opt. 158, 142–151 (2018)

    Article  Google Scholar 

  • Kataz, O., Malka, D.: Design of novel SOI 1 × 4 optical power splitter using seven horizontally slotted waveguides. Photon. Nanostruct. Fundam. Appl. 25, 9–13 (2017)

    Article  ADS  Google Scholar 

  • Knight, J.C., Broeng, J., Birks, T.A., St, P., Russel, J.: Photonic band gap guidance in optical fiber. Science 282, 1476–1478 (1998)

    Article  Google Scholar 

  • Kowsari, A., Saghaei, H.: Resonantly enhanced all-optical switching in microfiber Mach-Zehnder interferometers. IET Electron. Lett. 54, 229–231 (2017)

    Article  Google Scholar 

  • Kumar, A., Varshney, R.K., Sinha, R.K.: Scalar modes and coupling characteristics of eight port waveguide couplers. J Lightw. Technol. 7, 293–296 (1989)

    Article  ADS  Google Scholar 

  • Lin, C.-T.: 400-Channel 25-GHz-spacing SOI-based planar waveguide demultiplexer employing a concave grating across C and L-bands. Opt. Express 8(6), 6108–6115 (2010)

    Article  ADS  Google Scholar 

  • Lin, C., Nguyen, V., French, W.: Wideband nearir continuum (0.7–2.1 μm) generated in low-loss optical fibres. Electron Lett 14(25), 822–823 (1978)

    Article  ADS  Google Scholar 

  • Malitson, I.: Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55(10), 1205–1208 (1965)

    Article  ADS  Google Scholar 

  • Malka, D., Peled, A.: Power splitting of 1 × 16 in multicore photonic crystal fibers. Appl. Surf. Sci. 417, 34–39 (2017)

    Article  ADS  Google Scholar 

  • Malka, D., Zalevsky, Z.: Multicore photonic crystal fiber based 1 × 8 two-dimensional intensity splitters/couplers. Electromagnetics 33, 413–420 (2013)

    Article  Google Scholar 

  • Malka, D., Sintov, Y., Zalevsky, Z.: Fiber-laser monolithic coherent beam combiner based on multicore photonic crystal fiber. Opt. Eng. (2014). https://doi.org/10.1117/1.oe.54.1.011007

    Article  Google Scholar 

  • Malka, D., Cohen, E., Zalevsky, Z.: Design of 4 × 1 power beam combiner based on multicore photonic crystal fiber. Appl. Sci 7, 695–704 (2017)

    Article  Google Scholar 

  • Mortimore, D.B.: Wavelength-flattened fused couplers. Electron. Lett. 21, 742–743 (1985)

    Article  Google Scholar 

  • Mortimore, D.B.: Theory and fabrication of 4 × 4 single-mode fused optical fiber coupler. Appl. Opt. 29, 371–374 (1990)

    Article  ADS  Google Scholar 

  • Naghizade, S., Sattari-Esfahlan, S.M.: Tunable high performance 16-channel demultiplexer on 2D photonic crystal ring resonator operating at telecom wavelength. J. Opt. Commun. (2017a). https://doi.org/10.1515/joc-2017-0199

    Article  Google Scholar 

  • Naghizade, S., Sattari-Esfahlan, S.M.: High-performance ultracompact communication triplexer on silicon-on-insulator photonic crystal structure. Photon. Netw. Commun. 34, 445–450 (2017b)

    Article  Google Scholar 

  • Naghizade, S., Sattari-Esfahlan, S.M.: Loss-less elliptical channel drop filter for WDM applications. J. Opt. Commun. (2017c). https://doi.org/10.1515/joc-2017-0088

    Article  Google Scholar 

  • Nakasyotani, T., Toda, H., Kuri, T., et al.: Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinum light source. J. Lightw. Technol. 24(1), 404–410 (2006)

    Article  ADS  Google Scholar 

  • Ranka, J.K., Windeler, R.S., Stentz, A.J.: Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25(1), 25–27 (2000)

    Article  ADS  Google Scholar 

  • Reeves, W., Skryabin, D.V., Biancalana, F., et al.: Transformation and control of ultra-short pulses in dispersion engineered photonic crystal fibres. Nature 424, 511–515 (2003)

    Article  ADS  Google Scholar 

  • Russell, P.S.J.: Photonic-crystal fibers. J. Lightw. Technol. 24, 4729–4749 (2006)

    Article  ADS  Google Scholar 

  • Saghaei, H.: Supercontinuum source for dense wavelength division multiplexing in square photonic crystal fiber via fluidic infiltration approach. Radioengineering 26(1), 16–22 (2017a)

    Article  Google Scholar 

  • Saghaei, H.: Supercontinuum source for dense wavelength division multiplexing in square photonic crystal fiber via fluidic infiltration approach. Radio Eng. 26, 16–22 (2017b)

    Google Scholar 

  • Saghaei, H.: Dispersion-engineered microstructured optical fiber for mid-infrared supercontinuum generation. Appl. Opt. 57(20), 5591–5598 (2018)

    Article  ADS  Google Scholar 

  • Saghaei, H., Ghanbari, A.: White light generation using photonic crystal fiber with sub-micron circular lattice. J. Electr. Eng. 68(4), 1–9 (2017)

    Google Scholar 

  • Saghaei, H., Ebnali-heidari, M., Moravvej-Farshi, M.K.: Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers. Appl. Opt. 54(8), 2072–2079 (2015)

    Article  ADS  Google Scholar 

  • Saghaei, H., Moravvej-Farshi, M.K., Ebnali-Heidari, M., Moghadasi, M.N.: Ultra-wide mid-infrared supercontinuum generation in As 40 Se 60 chalcogenide fibers: solid core PCF versus SIF. IEEE J. Sel. Top. Quantum Electron. 22(2), 1–8 (2016a)

    Article  Google Scholar 

  • Saghaei, H., Heidari, V., Ebnali-Heidari, M., Yazdani, M.R.: A systematic study of linear and nonlinear properties of photonic crystal fibers. Optik-Int. J. Light Electron Opt. 127(24), 11938–11947 (2016b)

    Article  Google Scholar 

  • Van Roey, J., van der Donk, J., Lagasse, P.E.: Beam-propagation method: analysis and assessment. J. Opt. Soc. Am. 71, 803–810 (1981)

    Article  ADS  Google Scholar 

  • Varshney, S.K., Saitoh, K., Sinha, R.K., Koshiba, M.: Coupling characteristics of multicore photonic crystal fiber-based 1 × 4 power splitters. J. Lightw. Technol. 27, 2062–2068 (2009)

    Article  ADS  Google Scholar 

  • Wang, X.-Z., Zhu, H., Liu, Z.: Numerical study a broad low-loss pass-band optical metamaterials filter through tailoring dispersion. Opt. Communication 395, 236–240 (2017)

    Article  ADS  Google Scholar 

  • Wu, T.-L., Chao, C.-H.: A novel ultra-flattened dispersion photonic crystal fiber. IEEE Photon. Technol. Lett. 17(1), 67–69 (2005)

    Article  ADS  Google Scholar 

  • Zengerle, R., Leminger, O.G.: Narrow-band wavelength-selective directional couplers made of dissimilar single-mode fibers. J. Lightw. Technol. 5, 1196–1198 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh Naghizade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghizade, S., Mohammadi, S. Design and engineering of dispersion and loss in photonic crystal fiber 1 × 4 power splitter (PCFPS) based on hole size alteration and optofluidic infiltration. Opt Quant Electron 51, 17 (2019). https://doi.org/10.1007/s11082-018-1731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1731-6

Keywords

Navigation