Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni)

  • A. Nisha
  • P. Maheswari
  • P. M. Anbarasan
  • K. B. RajeshEmail author
  • Z. Jaroszewicz


In this paper, surface plasmon resonance (SPR) sensor on 2D materials such as MoS2 and graphene on Au and magnetic material Ni in Kretschmann configuration is analyzed using transfer matrix method. Here we noted that by sandwiching the MoS2 layer between the Au and Ni film and adding graphene over Ni film improved the sensitivity as high as 229°/RIU. We also noted that the sensitivity of the proposed sensor changes with the addition of no. of layers of graphene and MoS2. We expect that such a high sensitivity SPR sensor could find optional application in chemical examination, medical diagnostic and biological detections.


Surface plasmon resonance Sensitivity Biosensor Grapheme MoS2 


  1. Cai, D., Lu, Y., Lin, K., Wang, P., Ming, H.: Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM). Opt. Express 16, 14597–14602 (2008)ADSCrossRefGoogle Scholar
  2. Chen, J., Badiolai, M., Gonzalez, P.A., Thongrattanasiri, S., Osmond, J., Pasenovic, M., Centeno, A., Pesquera, A., Godignon, P., Elorza, A.Z., Camara, N., Abajo, F.J.G.D., Hillenbrand, P., Koppens, F.H.L.: Optical nano-imaging of gate-tunable graphene plasmons. Nature 487(7405), 77–81 (2012)ADSCrossRefGoogle Scholar
  3. Chen, W., Santos, E.J.G., Zhu, W., Kaxiras, E., Zhang, Z.: Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. Nano Lett. 13(2), 509–514 (2013)ADSCrossRefGoogle Scholar
  4. Choi, S.H., Kim, Y.L., Byun, K.M.: Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt. Express 19(2), 458–466 (2011)ADSCrossRefGoogle Scholar
  5. Dai, X., Jiang, L., Xiang, Y.: Low threshold optical bistability at terahertz frequencies with graphene surface plasmons. Sci. Rep. 5, 12271 (2015)ADSCrossRefGoogle Scholar
  6. Elias, D.C., Gorbachev, R.V., Mayorov, A.S., Morozov, S.V., Zhukov, A.A., Blake, P., Ponomarenko, L.A., Grigorieva, I.V., Novoselov, K.S., Guinea, F., Geim, A.K.: Dirac cones reshaped by interaction effect in suspended graphene. Nat. Phys. 7, 701–704 (2011)CrossRefGoogle Scholar
  7. Englebienne, P., Hoonacker, A.V., Verhas, M.: Surface plasmon resonance: principles, methods and applications in biochemical sciences. Spectroscopy 17, 255–273 (2003)CrossRefGoogle Scholar
  8. Esteban, Ó., Naranjo, F.B., Herrera, N.D., Felip, S.V., Navarrete, M.C., Cano, A.G.: High-sensitive SPR sensing with indium nitride as a dielectric overlay of optical fibers. Sens. Actuators B 158(1), 372–376 (2011)CrossRefGoogle Scholar
  9. Fei, Z., Rodin, A.S., Andreev, G.O., Bao, W., McLeod, A.S., Wagner, M., Zhang, L.M., Zhao, Z., Thiemens, M., Dominguez, G., Fogler, M.M., Castro Neto, A.H., Lau, C.N., Keilmann, F., Basov, D.N.: Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012)ADSCrossRefGoogle Scholar
  10. Flanagan, M.T., Pantell, R.H.: Surface plasmon resonance and immunosensors. Electron. Lett. 20, 968–970 (1984)CrossRefGoogle Scholar
  11. Gupta, G., Kondoh, J.: Tuning and sensitivity enhancement of surface plasmon resonance sensor. Sens. Actuators B 122, 381–388 (2007)CrossRefGoogle Scholar
  12. Gwon, H.R., Lee, S.H.: Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Mater. Trans. 51, 1150–1155 (2010)CrossRefGoogle Scholar
  13. Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)CrossRefGoogle Scholar
  14. Homola, J., Koudela, I., Yee, S.S.: Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens. Actuators B 54, 16–24 (1999)CrossRefGoogle Scholar
  15. Huang, D.W., Ma, Y.F., Sung, M.J., Huang, C.P.: Approach the angular sensitivity limit in surface plasmon resonance sensors with low index prism and large resonant angle. Opt. Eng. 49, 054403 (2010)ADSCrossRefGoogle Scholar
  16. Lee, K.L., Lee, C.W., Wang, W.S., Wei, P.K.: Sensitive biosensor array using surface plasmon resonance on metallic nanoslits. J. Biomed. Opt. 12(4), 044023–044025 (2007)ADSCrossRefGoogle Scholar
  17. Lee, M., Jeon, H., Kim, S.: Highly tunable and fully biocompatible silk nanoplasmonic optical sensor. Nano Lett. 15, 3358–3363 (2015)ADSCrossRefGoogle Scholar
  18. Lertvachirapaiboon, C., Baba, A., Ekgasit, S., Thammacharoen, C., Shinbo, K., Kato, K., Kaneko, F.: Gold nanoparticle synthesis used for sensor applications. In: IEEE Conference on Proceedings of ISEIM (2011)Google Scholar
  19. Lin, Z., Jiang, L., Wu, L., Guo, J., Dai, X., Xiang, Y., Fan, D.: Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au–MoS2–Au films. IEEE Photonics J. 8, 2631407–2631416 (2016)ADSGoogle Scholar
  20. Maharana, P.K., Srivastava, T., Jha, R.: Ultrasensitive plasmonic imaging sensor based on graphene and silicon. IEEE Photonics Technol. Lett. 25(2), 122–125 (2013)ADSCrossRefGoogle Scholar
  21. Maharana, P.K., Jha, R., Palei, S.: Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sens. Actuators B Chem. 190, 494–501 (2014a)CrossRefGoogle Scholar
  22. Maharana, P.K., Srivastava, T., Jha, R.: On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared. Plasmonics 9(5), 1113–1120 (2014b)CrossRefGoogle Scholar
  23. Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)ADSCrossRefGoogle Scholar
  24. Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P., Tripathi, R.: Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer. Opt. Quant. Electron. 7(11), 3599–3611 (2015a)CrossRefGoogle Scholar
  25. Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P.: Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl. Phys. A 121(2), 525–533 (2015b)ADSCrossRefGoogle Scholar
  26. Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P., Tripathi, R.: Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer. Opt. Quantum Electron. 47(11), 3599–3611 (2015c)CrossRefGoogle Scholar
  27. Mishra, A.K., Mishra, S.K., Verma, R.K.: An SPR-based sensor with an extremely large dynamic range of refractive index measurements in the visible region. J. Phys. D Appl. Phys. 48(43), 435502 (2015)ADSCrossRefGoogle Scholar
  28. Mishra, A.K., Mishra, S.K., Verma, R.K.: Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance based fiber optic sensing. J. Phys. Chem. C 120, 2893–2900 (2016)CrossRefGoogle Scholar
  29. Nylander, C., Liedberg, B., Lind, T.: Detecting high-refractive-index media using surface plasmon sensor with one-dimensional metal diffraction grating. Sens. Actuators 3, 79–88 (1982)CrossRefGoogle Scholar
  30. Otto, A.: Excitation of nonradioactive surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398–410 (1968)ADSCrossRefGoogle Scholar
  31. Ou, J.Z., Chrimes, A.F., Wang, Y., Tang, S.Y., Strano, M.S., Kalantar- Zadeh, K.: Ion-driven photoluminescence modulation of quasi-twodimensional MoS2 nanoflakes for applications in biological systems. Nano Lett. 14(2), 857–863 (2014)ADSCrossRefGoogle Scholar
  32. Ouyang, Q., Zeng, S., Li, J., Hong, L., Xu, G., Dinh, X.Q., Qian, J., He, S., Qu, J., Coquet, P., Yong, K.T.: Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. 6, 28190 (2016)ADSCrossRefGoogle Scholar
  33. Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)ADSCrossRefGoogle Scholar
  34. Piliarik, M., Homola, J.: Surface plasmon resonance (SPR) sensors: approaching their limits. Opt. Express 17(19), 16505–16517 (2009)ADSCrossRefGoogle Scholar
  35. Kooyman, R.P.H.: Physics of Surface Plasmon Resonance. In: Schasfoort, R.B., Tudos, A.J. (eds.) Handbook of Surface Plasmon Resonance, pp. 15–34. Royal Society of Chemistry, London (2008)CrossRefGoogle Scholar
  36. Salihoglu, O., Balci, S., Kocabas, C.: Plasmon-polaritons on graphene–metal surface and their use in biosensors. Appl. Phys. Lett. 100(21), 213110 (2012)ADSCrossRefGoogle Scholar
  37. Sanchez, O.S., Lembke, D., Kayci, M., Radenovic, A., Kis, A.: Ultra sensitive photo detectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013)ADSCrossRefGoogle Scholar
  38. Shah, K., Sharma, N.K.: SPR based fiber optic sensor utilizing thin film of nickel. In: AIP Conference Proceedings 2009, p 020040 (2018)Google Scholar
  39. Shalabney, A., Abdulhalim, I.: Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev. 5, 571–606 (2011)ADSCrossRefGoogle Scholar
  40. Sharma, N.: Performance of different metals in optical fiber-based surface plasmon resonance sensor. Indian Acad. Sci. 78(3), 417–427 (2012)Google Scholar
  41. Sharma, B.K.: Solid state physics and devices-the harbinger of third wave of civilization. I.C. chips of future generation part 3. Carriers–phonon interaction in graphene. OpenStax-CNX module: m44257 September 15 (2014)Google Scholar
  42. Shushama, K.N., Rana, M.M., Inum, R., Hossain, M.B.: Sensitivity enhancement of graphene coated surface plasmon resonance biosensor. Opt. Quantum Electron. 49(381),1–13 (2017)Google Scholar
  43. Singh, V.V., Gupta, G., Batra, A., Nigam, A.K., Boopathi, M., Gutch, P.K., Tripathi, B.K., Srivastava, A., Samuel, M., Agarwal, G.S., Singh, B., Vijayaraghavan, R.: Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application. Adv. Funct. Mater. 22(11), 2352–2362 (2012)CrossRefGoogle Scholar
  44. Song, B., Li, D., Qi, W., Elstner, M., Fan, C., Fang, H.: Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. ChemPhysChem 11(3), 585–589 (2010)CrossRefGoogle Scholar
  45. Srivastava, S.K., Verma, R., Gupta, B.D.: Theoretical modeling of a self-referenced dual mode SPR sensor utilizing indium tin oxide film. Opt. Commun. 369, 131–137 (2016)ADSCrossRefGoogle Scholar
  46. Stewart, M.E., Anderton, C.R., Thompson, L.B., Maria, J., Gray, S.K., Rogers, J.A., Nuzzo, R.G.: Nano structured plasmonic sensors. Chem. Rev. 108(2), 494–521 (2008)CrossRefGoogle Scholar
  47. Szunerits, S., Maalouli, N., Wijaya, E., Vilcot, J.P., Boukherroub, R.: Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal. Bioanal. Chem. 405(5), 1435–1443 (2013)CrossRefGoogle Scholar
  48. Verma, R., Gupta, B.D., Jha, R.: Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 16, 623–631 (2011)CrossRefGoogle Scholar
  49. Verma, A., Prakas, A., Tripati, R.: Performance analysis of graphene based surface plasmon resonance biosensor for detection of pseudomonas-like bacteria. Opt. Quantum Electron. 47(5), 1197–1205 (2014)CrossRefGoogle Scholar
  50. Wu, L., Chu, H.S., Koh, W.S., Li, E.P.: Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18, 14395–14400 (2010)ADSCrossRefGoogle Scholar
  51. Wu, L., Gu, J., Wang, Q., Lu, S., Dai, X., Xiang, Y., Fan, D.: Sensitivity enhancement by using few-layer black phosphorous–graphene/TMDCc heterostructures in surface plasmon resonance biochemical sensor. Sens. Actuators B Chem. 249, 542–548 (2017)CrossRefGoogle Scholar
  52. Xiang, Y., Dai, X., Guo, J., Wen, S., Tang, D.: Tunable optical bistability at the graphene-covered nonlinear interface. Appl. Phys. Lett. 104(5), 051108-1–051108-5 (2014)ADSGoogle Scholar
  53. Xing, F., Liu, Z.B., Deng, Z.C., Kong, X.T., Yan, X.Q., Chen, X.D., Ye, Q., Zhang, C.P., Chen, Y.S., Tian, J.G.: Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor. Sci. Rep. 22, 908 (2012)CrossRefGoogle Scholar
  54. Xu, H., He, D., Fu, M., Wang, W., Wu, H., Wang, Y.: Optical identification of MoS2/graphene heterostructure on SiO2/Si substrate. Opt. Express 22(13), 15969–15974 (2014)ADSCrossRefGoogle Scholar
  55. Zeng, S., Yong, K.T., Roy, I., Dinh, X.Q., Yu, X., Luan, F.: A review on functionalized gold Nanoparticles for biosensing applications. Plasmonics 6, 491–506 (2011)CrossRefGoogle Scholar
  56. Zeng, S., Hu, S., Xia, J., Anderson, T., Dinh, X.Q., Meng, X.M., Coquet, P., Yong, K.T.: Graphene–MoS2 hybrid nano structure enhanced surface plasmon resonance biosensor. Sens. Actuators B Chem. 207, 801–810 (2015)CrossRefGoogle Scholar
  57. Zhao, J., Zhang, X.Y., Yonzon, C.R., Haes, A.J., Van Duyne, R.P.: Localized surface plasmon resonance biosensors. Nano Med. (Lond.) 1(2), 219–228 (2006)CrossRefGoogle Scholar
  58. Zheng, G., Chen, Y., Bu, L., Xu, L., Su, W.: Waveguide-coupled surface phonon resonance sensors with super-resolution in the mid-infrared region. Opt. Lett. 41, 1582–1585 (2016)ADSCrossRefGoogle Scholar
  59. Zhu, C., Zeng, Z., Li, H., Li, F., Fan, C., Zhang, H.: Singlelayer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 135(16), 5998–6001 (2013)CrossRefGoogle Scholar
  60. Zhu, M., Du, Z., Yin, Z., Zhou, W., Liu, Z., Tsang, S.H., Teo, E.H.T.: Low-temperature in situ growth of graphene on metallic substrate and its application in anticorrosion. ACS Appl. Mater. Interface 8, 502–510 (2015a)CrossRefGoogle Scholar
  61. Zhu, M., Wu, J., Du, J., Tay, R.Y., Li, H., Özyilmaz, B., Teo, E.H.T.: Wafer-scale graphene and ferroelectric multilayer for flexible and fast-switched modulation applications. Nanoscale 7, 14730–14737 (2015b)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Nisha
    • 1
  • P. Maheswari
    • 3
  • P. M. Anbarasan
    • 1
  • K. B. Rajesh
    • 2
    Email author
  • Z. Jaroszewicz
    • 4
    • 5
  1. 1.Department of PhysicsPeriyar UniversitySalemIndia
  2. 2.Department of PhysicsChikkanna Government Arts CollegeTirupurIndia
  3. 3.Department of PhysicsPSGR Krishnammal College for WomenCoimbatoreIndia
  4. 4.Department of Physical OpticsInstitute of Applied OpticsWarsawPoland
  5. 5.National Institute of TelecommunicationsWarsawPoland

Personalised recommendations