Skip to main content
Log in

Flattened and broadband mid-infrared super-continuum generation in As2Se3 based holey fiber

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

By using an As2Se3 based holey fiber (HF) with a normal flat dispersion profiles, a flattened and broadband mid-infrared super-continuum generation is analysed. The transmission of an ultra-short pulse in the HF is numerically simulated by solving the generalized nonlinear Schrödinger equation under various parameters. The simulation results show that, by launching a pulse with a width of 50 fs and a peak power of 4.25 kW at 4375 nm into the 6 mm-long HF, a flat and broadband super-continuum at 3 dB level is successfully generated. The super-continuum covers the wavelengths from 3866 to 5958 nm which is the largest flat bandwidth reported in such a short fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, New York (2006)

    MATH  Google Scholar 

  • Alfano, R.R.: The Supercontinuum Laser Source: The Ultimate White Light. Springer, Berlin (2016)

    Book  Google Scholar 

  • Alfano, R.R., Shapiro, S.L.: Emission in the region 4000–7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24(11), 584–587 (1970)

    Article  ADS  Google Scholar 

  • Anderson, D., Desaix, M., Lisak, M., Quiroga-Teixeiro, M.L.: Wave breaking in nonlinear-optical fibers. J. Opt. Soc. Am. B 9(8), 1358–1361 (1992)

    Article  ADS  Google Scholar 

  • Birks, T.A., Knight, J.C., Russell, P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(13), 961–963 (1997)

    Article  ADS  Google Scholar 

  • Broderick, N.G.R., Monro, T.M., Bennett, P.J., Richardson, D.J.: Nonlinearity in holey optical fibers: measurement and future opportunities. Opt. Lett. 24(20), 1395–1397 (1999)

    Article  ADS  Google Scholar 

  • Chen, M.Y., Yu, R.J., Zhao, A.P.: Highly birefringent rectangular lattice photonic crystal fibres. J. Opt. A Pure Appl. Opt. 6(10), 997–1000 (2004)

    Article  ADS  Google Scholar 

  • Cheng, T., Kawashima, H., Xue, X., Deng, D., Matsumoto, M., Misumi, T., Suzuki, T., Ohishi, Y.: Fabrication of a chalcogenide-tellurite hybrid microstructured optical fiber for flattened and broadband supercontinuum generation. J. Lightwave Technol. 33(2), 333–338 (2015)

    Article  ADS  Google Scholar 

  • Cook, K., Canning, J., Leon-Saval, S., Reid, Z., Hossain, M.A., Comatti, J.E., Luo, Y., Peng, G.D.: Air-structured optical fiber drawn from a 3D-printed preform. Opt. Lett. 40(17), 3966–3969 (2015)

    Article  ADS  Google Scholar 

  • Dantanarayana, H.G., Abdel-Moneim, N., Tang, Z., Sojka, L., Sujecki, S., Furniss, D., Seddon, A.B., Kubat, I., Bang, O., Benson, T.M.: Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation. Opt. Mater. Exp. 4(7), 1444–1455 (2014)

    Article  ADS  Google Scholar 

  • Domachuk, P., Chapman, A., Mägi, E., Steel, M.J., Nguyen, H.C., Eggleton, B.J.: Transverse characterization of high air-fill fraction tapered photonic crystal fiber. Appl. Opt. 44(19), 3885–3892 (2005)

    Article  ADS  Google Scholar 

  • Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)

    Article  ADS  Google Scholar 

  • Ebnali-Heidari, M., Saghaei, H., Koohi-Kamali, F., NaserMoghadasi, M., Moravvej-Farshi, M.K.: Proposal for supercon-tinuum generation by optofluidic infiltrated photonic crystalfibers. IEEE J. Sel. Top. Quant. Electron. 20(5), 582–589 (2014)

    Article  ADS  Google Scholar 

  • Goldberg, L., Burns, W.K., McElhanon, R.W.: Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled LiNbO3. Opt. Lett. 20(11), 1280–1282 (1995)

    Article  ADS  Google Scholar 

  • Guiyao, Z., Zhiyun, H., Shuguang, L., Lantian, H.: Fabrication of glass photonic crystal fibers with a die-cast process. Appl. Opt. 45(18), 4433–4436 (2006)

    Article  ADS  Google Scholar 

  • Heidt, A.M.: Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J. Opt. Soc. Am. B 27(3), 550–559 (2010)

    Article  ADS  Google Scholar 

  • Issa, N.A., van Eijkelenborg, M.A., Fellew, M., Cox, F., Henry, G., Large, M.C.: Fabrication and study of microstructured optical fibers with elliptical holes. Opt. Lett. 29(12), 1336–1338 (2004)

    Article  ADS  Google Scholar 

  • Kim, S., Kee, C.-S.: Dispersion properties of dual-core photonic-quasicrystal fiber. Opt. Exp. 17(18), 15885–15890 (2009)

    Article  ADS  Google Scholar 

  • Knight, J.C., Birks, T.A., Cregan, R.F., Russell, P.J., de Sandro, J.P.: Large mode area photonic crystal fibre. Electron. Lett. 34(13), 1347–1348 (1998)

    Article  Google Scholar 

  • Lenz, G., Zimmermann, J., Katsufuji, T., Lines, M.E., Hwang, H.Y., Spälter, S., Slusher, R.E., Cheong, S.-W.: Large Kerr effect in bulk Se-based chalcogenide glasses. Opt. Lett. 25(4), 254–256 (2000)

    Article  ADS  Google Scholar 

  • Liao, M., Chaudhari, C., Qin, G., Yan, X., Kito, C., Suzuki, T., Ohishi, Y., Matsumoto, M., Misumi, T.: Fabrication and characterization of a chalcogenide tellurite composite microstructure fiber with high nonlinearity. Opt. Exp. 17(24), 21608–21614 (2009)

    Article  ADS  Google Scholar 

  • Mortensen, N.A., Folkenberg, J.R., Nielsen, M.D., Hansen, K.P.: Modal cutoff and the v parameter in photonic crystal fibers. Opt. Lett. 28(28), 1879–1981 (2003)

    Article  ADS  Google Scholar 

  • Popmintchev, T., Chen, M., Popmintchev, D., et al.: Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336(6086), 1287–1291 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  • Ranka, J.K., Windeler, R.S., Stentz, A.J.: Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25(1), 25–27 (2000)

    Article  ADS  Google Scholar 

  • Reeves, W.H., Knight, J.C., Russell, P.S.J., Roberts, P.J.: Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Express 10(14), 609–613 (2002)

    Article  ADS  Google Scholar 

  • Saghaei, H., Moravvej-Farshi, M.K., Ebnali-Heidari, M., Moghadasi, M.N.: Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: solid core PCF versus SIF. IEEE J. Sel. Top. Quant. 22(2), 1–8 (2016)

    Article  Google Scholar 

  • Saini, T.S., Kumar, A., Sinha, R.K.: Broadband mid-infrared supercontinuum spectra spanning 2–15 μm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber. J. Lightwave Technol. 33(18), 3914–3920 (2015)

    Article  ADS  Google Scholar 

  • Saitoh, K., Florous, N., Koshiba, M.: Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses. Opt. Exp. 13(21), 8365–8371 (2005)

    Article  ADS  Google Scholar 

  • Schliesser, N., Picque, T., Hansch, W.: Mid-infrared frequency combs. Nat. Photon. 6(7), 440–449 (2012)

    Article  ADS  Google Scholar 

  • Seddon, B.: A prospective for new mid-infrared medical endoscopy using chalcogenide glasses. Int. J. Appl. Glass Sci. 2(3), 177–191 (2011)

    Article  Google Scholar 

  • Sharma, M., Konar, S.: Three octave spanning supercontinuum by red-shifted dispersive wave in photonic crystal fibers. J. Mod. Opt. 63(5), 501–510 (2016)

    Article  ADS  Google Scholar 

  • Shiryaev, V., Churbanov, M.: Trends and prospects for development of chalcogenide fibers for mid-infrared transmission. J. Non-Cryst. Solids 377, 225–230 (2013)

    Article  ADS  Google Scholar 

  • Suzuki, K., Kubota, H., Kawanishi, S., Tanaka, M., Fujita, M.: Optical properties of a low-loss polarization maintaining photonic crystal fiber. Opt. Express 9(13), 676–680 (2001)

    Article  ADS  Google Scholar 

  • Wadsworth, W.J., Joly, N., Knight, J.C., Birks, T.A., Biancalana, F., Russell, P.J.: Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres. Opt. Exp. 12(2), 299–309 (2004)

    Article  ADS  Google Scholar 

  • Wilson, R.H., Tapp, H.S.: Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods. Trends Anal. Chem. 18(2), 85–93 (1999)

    Article  Google Scholar 

  • Yan, P., Dong, R., Zhang, G., Li, H., Ruan, S., Wei, H., Luo, J.: Numerical simulation on the coherent time-critical 2–5 μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile. Opt. Commun. 293, 133–138 (2013)

    Article  ADS  Google Scholar 

  • Yi, C., Zhang, P., Chen, F., Dai, S., Wang, X., Tiefeng, X., Nie, Q.: Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers. Appl. Phys. B 116(3), 653–658 (2014)

    Article  ADS  Google Scholar 

  • Zhang, H., Wang, Q., Yang, B., Yu, L.: Dispersion properties of hollow-core photonic bandgap fibers based on a square lattice cladding. Opt. Commun. 281(13), 3486–3491 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the High Level Research Start-up Fund of ZhouKou Normal University, Henan, China (No. ZKNUC2017033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erlei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, E., Li, J., Li, J. et al. Flattened and broadband mid-infrared super-continuum generation in As2Se3 based holey fiber. Opt Quant Electron 51, 10 (2019). https://doi.org/10.1007/s11082-018-1722-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1722-7

Keywords

Navigation